Influences of NaCl and Na2SO4 on the Micellization Behavior of the Mixture of Cetylpyridinium Chloride + Polyvinyl Pyrrolidone at Several Temperatures
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Solution Preparation and Conductivity Measurement
3. Results and Discussion
3.1. The CMC and β for the Aggregation of CPC + PVP Mixture in Aqueous and Salts Media
3.2. Effects of Temperature on the Association of CPC and PVP Mixture
3.3. Energetics of the Aggregation of CPC + PVP Mixture in Aqueous and Salts Media
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rosen, M.J. Surfactants and Interfacial Phenomena, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Rub, M.A.; Azum, N.; Asiri, A.M. Binary mixtures of sodium salt of ibuprofen and selected bile salts: Interface, micellar, thermodynamic, and spectroscopic study. J. Chem. Eng. Data 2017, 62, 3216–3228. [Google Scholar] [CrossRef]
- De Molina, P.M.; Gradzielski, M. Gels Obtained by Colloidal Self-Assembly of Amphiphilic Molecules. Gels 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Yan, C.; Li, Y.; Peng, Y.; Ma, L.; Wang, Q. Thermal stability of gel foams stabilized by xanthan gum, silica nanoparticles and surfactants. Gels 2021, 7, 179. [Google Scholar] [CrossRef] [PubMed]
- Fendler, J.H.; Fendler, E.J. Catalysis in Micellar and Macromolecular Systems; Academic Press: New York, NY, USA, 1975. [Google Scholar] [CrossRef]
- Kumar, D.; Hidayathulla, S.; Rub, M.A. Association behavior of a mixed system of the antidepressant drug imipramine hydrochloride and dioctyl sulfosuccinate sodium salt: Effect of temperature and salt. J. Mol. Liq. 2018, 271, 254–264. [Google Scholar] [CrossRef]
- Schott, H. Surfactant systems: Their chemistry, pharmacy and biology. J. Pharm. Sci. 1985, 74, 1140–1141. [Google Scholar] [CrossRef]
- Azum, N.; Naqvi, A.Z.; Rub, M.A.; Asiri, A.M. Multi-technique approach towards amphiphilic drug-surfactant interaction: A physicochemical study. J. Mol. Liq. 2017, 240, 189–195. [Google Scholar] [CrossRef]
- Yunoki, S.; Kohta, M.; Ohyabu, Y.; Sekiguchi, M.; Kubo, T.; Iwasaki, T. Electrostatic immobilization of cetylpyridinium chloride to poly(vinyl alcohol) hydrogels for the simple fabrication of wound dressings with the suppressed release of antibacterial agents. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Srivastava, A.; Ismail, K. Binding of phenol red to cetylpyridinium chloride at air–solution and micelle–solution interfaces in aqueous ethylene glycol media. Colloids Surf. A Physicochem. Eng. Asp. 2014, 462, 115–123. [Google Scholar] [CrossRef]
- Peng, X.; Xu, X.; Li, Y.; Cheng, L.; Zhou, X.; Ren, B. Transmission routes of 2019-nCoV and controls in dental practice. Int. J. Oral Sci. 2020, 12, 9. [Google Scholar] [CrossRef]
- Ather, A.; Patel, B.; Ruparel, N.B.; Diogenes, A.; Hargreaves, K.M. Coronavirus Disease 19 (COVID-19): Implications for clinical dental care. J. Endod. 2020, 46, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.; Williams, A.J.; Tropsha, A.; Ekins, S. Repurposing quaternary ammonium compounds as potential treatments for COVID-19. Pharm. Res. 2020, 37, 1–4. [Google Scholar] [CrossRef]
- Vergara-Buenaventura, A.; Castro-Ruiz, C. Use of mouthwashes against COVID-19 in dentistry. Br. J. Oral Maxillofac. Surg. 2020, 58, 924–927. [Google Scholar] [CrossRef]
- Silva, M.F.D.A.; dos Santos, N.B.; Stewart, B.; DeVizio, W.; Proskin, H.M. A clinical investigation of the efficacy of a commercial mouthrinse containing 0.05% cetylpyridinium chloride to control established dental plaque and gingivitis. J. Clin. Dent. 2009, 20, 55–61, PMID: 19591338. [Google Scholar] [PubMed]
- Mukherjee, P.K.; Esper, F.; Buchheit, K.; Arters, K.; Adkins, I.; Ghannoum, M.A.; Salata, R.A. Randomized, double-blind, placebo-controlled clinical trial to assess the safety and effectiveness of a novel dual-action oral topical formulation against upper respiratory infections. BMC Infect. Dis. 2017, 17, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, D.L.; Zilka, S.; Dimaano, M.; Fujioka, H.; Rackley, C.; Salata, R.; Griffith, A.; Mukherjee, P.K.; Ghannoum, M.A.; Esper, F. Cetylpyridinium Chloride (CPC) exhibits potent, rapid activity against influenza viruses in vitro and in vivo. Pathog. Immun. 2017, 2, 253–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikas, Y.J.; Blankschtein, D. Complexation of nonionic polymers and surfactants in dilute aqueous solutions. Langmuir 1994, 10, 3512–3528. [Google Scholar] [CrossRef]
- Sood, A.K. Influence of some polymers on micellization behavior of sodium caprylate and cetyl pyridinium chloride. AIP Conf. Proc. 2019, 2142, 200001. [Google Scholar] [CrossRef]
- Hoque, A.; Ahmed, F.; Halim, M.A.; Molla, M.R.; Rana, S.; Rahman, M.A.; Rub, M.A. Influence of salt and temperature on the interaction of bovine serum albumin with cetylpyridinium chloride: Insights from experimental and molecular dynamics simulation. J. Mol. Liq. 2018, 260, 121–130. [Google Scholar] [CrossRef]
- Vlachy, N.; Dolenc, J.; Jerman, B.; Kogej, K. Influence of stereoregularity of the polymer chain on interactions with surfactants: Binding of cetylpyridinium chloride by isotactic and atactic poly(methacrylic acid). J. Phys. Chem. B 2006, 110, 9061–9071. [Google Scholar] [CrossRef]
- Arrigler, V.; Kogej, K.; Majhenc, J.; Svetina, S. Interaction of cetylpyridinium chloride with giant lipid vesicles. Langmuir 2005, 21, 7653–7661. [Google Scholar] [CrossRef] [PubMed]
- Hoque, A.; Hossain, M.D.; Khan, M.A. Interaction of cephalosporin drugs with dodecyltrimethylammonium Bromide. J. Chem. Thermodyn. 2013, 63, 135–141. [Google Scholar] [CrossRef]
- Rub, M.A.; Azum, N.; Khan, F.; Asiri, A.M. Aggregation of sodium salt of ibuprofen and sodium taurocholate mixture in different media: A tensiometry and fluorometry study. J. Chem. Thermodyn. 2018, 121, 199–210. [Google Scholar] [CrossRef]
- Hoque, A.; Patoary, M.-O.; Rashid, M.; Molla, M.R.; Rub, M.A. Physico-chemical investigation of mixed micelle formation between tetradecyltrimethylammonium bromide and dodecyltrimethylammonium chloride in water and aqueous solutions of sodium chloride. J. Solut. Chem. 2017, 46, 682–703. [Google Scholar] [CrossRef]
- Waters, L.J.; Hussain, T.; Parkes, G. Titration calorimetry of surfactant–drug interactions: Micelle formation and saturation studies. J. Chem. Thermodyn. 2012, 53, 36–41. [Google Scholar] [CrossRef]
- Limbu, K.; Shah, S.K.; Bhattarai, A. Micellization behaviour of sodium dodecyl sulphate in presence and absence of sodium sulphate and zinc sulphate in distilled water by surface tension measurement. Bibechana 2014, 11, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Joy, T.R.; Mahbub, S.; Rub, M.A.; Hossain, A.A.; Hossain, D.; Khatun, M.J.; Mohanta, S.C.; Hossain, F.; Alghamdi, Y.G.; Hoque, A. Interaction of crystal violet dye with dodecyltrimethylammonium bromide in aqueous and electrolyte medium at different temperatures. J. Mol. Liq. 2021, 343, 117592. [Google Scholar] [CrossRef]
- Banipal, T.S.; Kaur, H.; Banipal, P.K. Studies on the binding ability of diclofenac sodium to cationic surfactants micelles in aqueous ethanol solutions. J. Therm. Anal. Calorim. 2017, 128, 501–511. [Google Scholar] [CrossRef]
- Hoque, A.; Mahbub, S.; Hossain, M.D.; Khan, M.A.; Khan, J.M.; Malik, A.; Ahmed, A.; Ahmed, M.Z. Influence of NaCl and temperature on the interaction between cephradine monohydrate and surfactants: Conductivity and UV–visible measurements. J. Mol. Liq. 2021, 328, 115418. [Google Scholar] [CrossRef]
- Garcı́a-Mateos, I.; Pérez, S.; Velázquez, M. Interaction between cetyl pyridinium chloride and water-soluble polymers in aqueous solutions. J. Colloid Interface Sci. 1997, 194, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.; Chakraborty, A.I.; Ghosh, S. Sodium Carboxymethylcellulose−CTAB interaction: A detailed thermodynamic study of polymer−surfactant interaction with opposite charges. Langmuir 2006, 22, 9905–9913. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, A. Micellization behavior of cetyltrimethylammonium bromide in the absence and presence of sodium polystyrene sulfonate in water and methanol-water mixture: A conductivity approach. J. Mol. Liq. 2019, 292, 111352. [Google Scholar] [CrossRef]
- Naqvi, A.Z.; Fatma, N.; Din, K.U. Physicochemical investigations of mixed micelles of cationic gemini surfactants with different triblock polymers. Colloid Polym. Sci. 2017, 295, 2323–2335. [Google Scholar] [CrossRef]
- Li, Y.; Bao, M.; Wang, Z.; Zhang, H.; Xu, G. Aggregation behavior and complex structure between triblock copolymer and anionic surfactants. J. Mol. Struct. 2011, 985, 391–396. [Google Scholar] [CrossRef]
- Dai, S.; Tam, K.C. Isothermal titration calorimetry studies of binding interactions between polyethylene glycol and ionic surfactants. J. Phys. Chem. B 2001, 105, 10759–10763. [Google Scholar] [CrossRef]
- Seng, W.P.; Tam, K.C.; Jenkins, R.D.; Bassett, D.R. Model Alkali-Soluble Associative (HASE) polymers and ionic surfactant interactions examined by isothermal titration calorimetry. Langmuir 2000, 16, 2151–2156. [Google Scholar] [CrossRef]
- Chai, S.G.; Zhang, H.; Xie, L.; Zou, Q.C.; Zhang, J.Z. A study of the interaction between polyvinylpyrrolidone and gemini surfactant G12-3-12 by NMR. Polym. Sci. Ser. A 2016, 58, 315–323. [Google Scholar] [CrossRef]
- Mukhim, T.; Ismail, K. Micellization of Cetylpyridinium Chloride in Aqueous Lithium Chloride, Sodium Chloride and Potassium Chloride Media. J. Surf. Sci. Technol. 2005, 21, 113–127. [Google Scholar] [CrossRef]
- Varade, D.; Joshi, T.; Aswal, V.; Goyal, P.; Hassan, P.; Bahadur, P. Effect of salt on the micelles of cetyl pyridinium chloride. Colloids Surf. A Physicochem. Eng. Asp. 2005, 259, 95–101. [Google Scholar] [CrossRef]
- Sardar, N.; Kamil, M.; Din, K.U. Interactions between polyvinylpyrrolidone and cationic gemini/conventional surfactants. Chem. Eng. Commun. 2013, 200, 1683–1700. [Google Scholar] [CrossRef]
- Hossain, A.A.; Sultana, M.N.; Khan, J.M.; Joy, T.R.; Mohanta, S.C.; Amin, R.; Hossain, F.; Irfan, M.; Ahmed, M.Z.; Kumar, D.; et al. Investigation of the effect of temperature and electrolytes on the physicochemical parameters for the self-assembly of dodecyltrimethylammonium bromide. Chem. Pap. 2021, 1–11. [Google Scholar] [CrossRef]
- Barbosa, A.M.; Santos, I.J.B.; Ferreira, G.M.D.; da Silva, M.D.C.H.; Teixeira, V.N.D.C.; da Silva, L.H.M. Microcalorimetric and SAXS Determination of PEO−SDS Interactions: The Effect of Cosolutes Formed by Ions. J. Phys. Chem. B 2010, 114, 11967–11974. [Google Scholar] [CrossRef] [Green Version]
- Akhlaghi, N.; Riahi, S. Salinity effect on the surfactant critical micelle concentration through surface tension measurement. Iran. J. Oil Gas Sci. Technol. 2019, 8, 50–63. [Google Scholar] [CrossRef]
- Mahbub, S.; Akter, S.; Luthfunnessa; Akter, P.; Hoque, A.; Rub, M.A.; Kumar, D.; Alghamdi, Y.G.; Asiri, A.M.; Džudžević-Čančar, H. Effects of temperature and polyols on the ciprofloxacin hydrochloride-mediated micellization of sodium dodecyl sulfate. RSC Adv. 2020, 10, 14531–14541. [Google Scholar] [CrossRef] [Green Version]
- Mahbub, S.; Rahman, M.; Rana, S.; Rub, M.A.; Hoque, A.; Khan, M.A.; Asiri, A.M. Aggregation behavior of sodium dodecyl sulfate and cetyltrimethylammonium bromide mixtures in aqueous/chitosan solution at various temperatures: An experimental and theoretical approach. J. Surf. Deterg. 2019, 22, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Mahbub, S.; Rub, M.A.; Hoque, A.; Khan, M.A. Mixed micellization study of dodecyltrimethylammonium chloride and cetyltrimethylammonium bromide mixture in aqueous/urea medium at different temperatures: Theoretical and experimental view. J. Phys. Org. Chem. 2018, 31, e3872. [Google Scholar] [CrossRef]
- Amin, R.; Mahbub, S.; Hidayathulla, S.; Alam, M.; Hoque, A.; Rub, M.A. An estimation of the effect of mono/poly-hydroxy organic compounds on the interaction of tetradecyltrimethylammonium bromide with levofloxacin hemihydrate antibiotic drug. J. Mol. Liq. 2018, 269, 417–425. [Google Scholar] [CrossRef]
- Mahbub, S.; Rub, M.A.; Hoque, A.; Khan, M.A. Influence of NaCl/urea on the aggregation behavior of dodecyltrimethylammonium chloride and sodium dodecyl sulfate at varying temperatures and compositions: Experimental and theoretical approach. J. Phys. Org. Chem. 2019, 32, e3917. [Google Scholar] [CrossRef]
- Dey, A.; Patra, N.; Mal, A.; Ghosh, S. Impact of organic polar solvents (DMSO and DMF) on the micellization and related behavior of an anionic (AOT), cationic (CEM2AB) and cationic gemini surfactant (16-5-16). J. Mol. Liq. 2017, 244, 85–96. [Google Scholar] [CrossRef]
- Graciani, M.D.M.; Muñoz, M.; Rodríguez, A.; Moyá, M.L. Water—N,N-Dimethylformamide Alkyltrimethylammonium Bromide Micellar Solutions: Thermodynamic, Structural, and Kinetic Studies. Langmuir 2005, 21, 3303–3310. [Google Scholar] [CrossRef]
- Mahbub, S.; Mia, M.L.; Roy, T.; Akter, P.; Uddin, A.R.; Rub, M.A.; Hoque, A.; Asiri, A.M. Influence of ammonium salts on the interaction of fluoroquinolone antibiotic drug with sodium dodecyl sulfate at different temperatures and compositions. J. Mol. Liq. 2020, 297, 111583. [Google Scholar] [CrossRef]
- Jha, R.; Ahluwalia, J.C. Thermodynamics of micellization of some decyl poly(oxyethylene glycol) ethers in aqueous urea solutions. J. Chem. Soc. Faraday Trans. 1993, 89, 3465–3469. [Google Scholar] [CrossRef]
- Masalci, Ö. Effects of polymer concentration and temperature on micellization of cetyltrimethylammnium bromide (ctab) in aqueous pvp-ctab mixed system. Eskişehir Tech. Univ. J. Sci. Technol. A—Appl. Sci. Eng. 2021, 22, 299–311. [Google Scholar] [CrossRef]
- Khan, Z. Micellization and Thermodynamic Properties of Cationic Surfactant Cetyltrimethylammonium Bromide in non-Aqueous Mixture of Lauric Acid. Int. J. Electrochem. Sci. 2017, 12, 4528–4542. [Google Scholar] [CrossRef]
- Sharma, V.; Thakur, V.; Kumar, A. Influence of PEG-4000 on the micellization behavior of SDBS and CPC at different temperatures. Int. J. Pharm. Pharm. Sci. 2016, 8, 318–321. [Google Scholar]
- Azum, N.; Asiri, A.M.; Rub, M.A.; Al-Youbi, A.O.; Khan, A. Thermodynamic aspects of polymer–surfactant interactions: Gemini (16-5-16)-PVP-water system. Arab. J. Chem. 2016, 9, S1660–S1664. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Yañez, O.; Zúñiga, C.; Kumar, A.; Singh, G.; Cantero-López, P. Protein-surfactant interactions: A multitechnique approach on the effect of Co-solvents over bovine serum albumin (BSA)-cetyl pyridinium chloride (CPC) system. Chem. Phys. Lett. 2020, 747, 137349. [Google Scholar] [CrossRef]
- Amin, R.; Alissa, S.A.; Saha, M.; Hossian, J.; Shahriar, I.; Halim, M.A.; Hoque, A.; Alothman, Z.A.; Wabaidur, S.M.; Kabir, S.E. Investigation of the impacts of temperature and electrolyte on the interaction of cationic surfactant with promethazine hydrochloride: Combined conductivity and molecular dynamics studies. J. Mol. Liq. 2020, 311, 113246. [Google Scholar] [CrossRef]
- Kamenka, N.; Burgaud, I.; Treiner, C.; Zana, R. Interaction of copper(II) dodecyl sulfate with poly(ethylene oxide) and poly(vinylpyrrolidone): Self-Diffusion, fluorescence probing, and conductivity study. Langmuir 1994, 10, 3455–3460. [Google Scholar] [CrossRef]
- Anand, K.; Yadav, O.P. Surface and thermodynamic properties of some surfactants in aqueous solutions containing poly(N -vinyl-2-pyrrolidone). Indian J. Chem. A 1994, 33A, 857–860. [Google Scholar]
- Bijma, K.; Engberts, J.B.F.N.; Haandrikman, G.; van Os, N.M.; Blandamer, M.J.; Butt, M.D.; Cullis, P.M. Thermodynamics of micelle formation by 1-Methyl-4-alkylpyridinium halides. Langmuir 1994, 10, 2578–2582. [Google Scholar] [CrossRef]
- Majhi, P.R.; Blume, A. Thermodynamic Characterization of Temperature-Induced Micellization and Demicellization of Detergents Studied by Differential Scanning Calorimetry. Langmuir 2001, 17, 3844–3851. [Google Scholar] [CrossRef]
- Chakraborty, I.; Moulik, S.P. Self-Aggregation of ionic C10 surfactants having different headgroups with special reference to the behavior of decyltrimethylammonium bromide in different salt environments: A calorimetric study with energetic analysis. J. Phys. Chem. B 2007, 111, 3658–3664. [Google Scholar] [CrossRef] [PubMed]
- Aktar, S.; Molla, M.R.; Mahbub, S.; Rub, M.A.; Hoque, A.; Islam, D.M.S. Effect of temperature and salt/alcohol on the interaction of tetradecyltrimethylammonium bromide/Triton X-100 with moxifloxacin hydrochloride: A multitechnique approach. J. Dispers. Sci. Technol. 2018, 40, 574–586. [Google Scholar] [CrossRef]
- Chen, L.-J.; Lin, S.-Y.; Huang, C.-C. Effect of hydrophobic chain length of surfactants on enthalpy−entropy compensation of micellization. J. Phys. Chem. B 1998, 102, 4350–4356. [Google Scholar] [CrossRef]
- Khan, M.A.R.; Amin, R.; Patoary, M.-O.; Rub, M.A.; Hoque, A.; Khan, M.A.; Kumar, D.; Asiri, A.M.; Khan, F.; Alfaifi, S.Y. Influence of electrolytes on the clouding and thermodynamic nature of non-ionic surfactant in the presence of an antibiotic drug. Phys. Chem. Liq. 2021, 59, 781–794. [Google Scholar] [CrossRef]
- Rub, M.A.; Hoque, M.A.; Azum, N.; Mahbub, S. Investigation of the aggregation, clouding and thermodynamics of the mixture of sodium alginate with sodium dodecyl sulfate and triton X-100 in aqueous and aqua-organic mixed solvents media. J. Mol. Liq. 2021, 346, 117109. [Google Scholar] [CrossRef]
- Sugihara, G.; Hisatomi, M. Enthalpy–Entropy compensation phenomenon observed for different surfactants in aqueous solution. J. Colloid Interface Sci. 1999, 219, 31–36. [Google Scholar] [CrossRef]
- Hoque, A.; Patoary, M.-O.; Molla, M.R.; Halim, M.A.; Khan, M.A.; Rub, M.A. Interaction between cetylpyridinium chloride and amino acids: A conductomertic and computational method study. J. Dispers. Sci. Technol. 2017, 38, 1578–1587. [Google Scholar] [CrossRef]
- Jolicoeur, C.; Philip, P.R. Enthalpy–Entropy Compensation for Micellization and Other Hydrophobic Interactions in Aqueous Solutions. Can. J. Chem. 1974, 52, 1834–1839. [Google Scholar] [CrossRef]
- Lumry, R.; Rajender, S. Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: A ubiquitous properly of water. Biopolymers 1970, 9, 1125–1227. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, H.; Lin, L.; Song, C.; Chen, Q.; Li, Z. Molecular dynamics simulation of four typical surfactants in aqueous solution. RSC Adv. 2019, 9, 3224–3231. [Google Scholar] [CrossRef] [Green Version]
- Koya, P.A.; Wagay, T.A.; Ismail, K. Conductometric studies on micellization of cationic surfactants in the presence of glycine. J. Solut. Chem. 2015, 44, 100–111. [Google Scholar] [CrossRef]
- Sachin, K.M.; Karpe, S.A.; Singh, M.; Bhattarai, A. Self-assembly of sodium dodecylsulfate and dodecyltrimethylammonium bromide mixed surfactants with dyes in aqueous mixtures. R. Soc. Open Sci. 2019, 6, 181979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name of the Materials | Sources | Purity in Mass Fraction | CAS Number | Molecular Weight (g/mol) |
---|---|---|---|---|
CPC | Sigma-Aldrich, st. louis, MAUSA | 0.99 | 124-03-8 | 340 |
PVP | Sigma-Aldrich, st. louis, MAUSA | 0.99 | 9003-39-8 | 360,000 |
NaCl | Merck, Gurgaon-12, India | 0.99 | 7647-14-5 | 58.44 |
Na2SO4 | Merck, Mumbai, India | 0.99 | 7757-82-6 | 142.04 |
cPVP | CMC1 | CMC2 | CMC3 |
---|---|---|---|
% (w/v) | mmol kg−1 | mmol kg−1 | mmol kg−1 |
0.01 | 0.67 | 2.27 | 6.06 |
0.03 | 0.74 | 2.68 | 6.22 |
0.05 | 0.83 | 2.88 | 6.47 |
0.10 | 1.12 | 3.49 | 7.44 |
Media | Isalts | T | CMC1 | CMC2 | CM3 |
---|---|---|---|---|---|
mmol kg−1 | K | mmol kg−1 | mmol kg−1 | mmol kg−1 | |
H2O | 0 | 298.15 | 0.92 | 3.03 | 7.31 |
303.15 | 1.12 | 3.49 | 7.44 | ||
308.15 | 1.16 | 3.71 | 7.71 | ||
313.15 | 1.23 | 3.95 | 7.81 | ||
318.15 | 1.26 | 3.82 | 7.62 | ||
323.15 | 1.32 | 3.32 | 7.13 | ||
H2O + NaCl | 1.50 | 298.15 | 0.78 | 4.29 | 8.01 |
303.15 | 0.73 | 4.06 | 7.73 | ||
308.15 | 0.57 | 3.15 | 7.66 | ||
313.15 | 0.71 | 2.97 | 7.43 | ||
318.15 | 0.77 | 2.49 | 7.45 | ||
323.15 | 0.83 | 2.36 | 7.54 | ||
H2O + Na2SO4 | 1.50 | 298.15 | 0.43 | 4.65 | 8.51 |
303.15 | 0.55 | 5.31 | 8.22 | ||
308.15 | 0.51 | 4.81 | 8.11 | ||
313.15 | 0.48 | 4.47 | 8.48 | ||
318.15 | 0.44 | 4.27 | 9.02 | ||
323.15 | 0.39 | 3.98 | 9.09 |
Media | Isalts | T | XCMC (×105) | β1 | ΔG01,m | ΔG01,t |
---|---|---|---|---|---|---|
mmol kg−1 | K | kJ mol−1 | kJ mol−1 | |||
H2O | 0 | 298.15 | 1.658 | 0.67 | −36.99 | |
303.15 | 2.018 | 0.65 | −37.08 | |||
308.15 | 2.090 | 0.65 | −37.54 | |||
313.15 | 2.216 | 0.64 | −37.87 | |||
318.15 | 2.270 | 0.63 | −38.34 | |||
323.15 | 2.379 | 0.62 | −39.00 | |||
H2O + NaCl | 1.50 | 298.15 | 1.406 | 0.69 | −37.05 | −0.0599 |
303.15 | 1.315 | 0.68 | −37.60 | −0.5124 | ||
308.15 | 1.027 | 0.68 | −38.26 | −0.7106 | ||
313.15 | 1.279 | 0.67 | −38.78 | −0.9095 | ||
318.15 | 1.388 | 0.65 | −38.91 | −0.5689 | ||
323.15 | 1.496 | 0.64 | −39.23 | −0.2351 | ||
H2O + Na2SO4 | 1.50 | 298.15 | 0.775 | 0.35 | −29.39 | 7.596 |
303.15 | 0.991 | 0.34 | −29.78 | 7.304 | ||
308.15 | 0.919 | 0.39 | −31.45 | 6.096 | ||
313.15 | 0.865 | 0.50 | −34.31 | 3.554 | ||
318.15 | 0.793 | 0.51 | −34.85 | 3.494 | ||
323.15 | 0.703 | 0.53 | −35.83 | 3.165 |
Media | Isalts mmol kg−1 | A | B | C |
---|---|---|---|---|
H2O | 0 | −69.463 | 0.3654 | −0.0006 |
H2O + NaCl | 1.5 | 126.7 | −0.8927 | 0.0014 |
H2O + Na2SO4 | 1.5 | −139.01 | 0.8273 | −0.0013 |
Media | Isalts | Tc | R2 | |
---|---|---|---|---|
mmol kg−1 | kJ mol−1 | (K) | ||
H2O | 0 | −38.05 | 309.06 | 0.9989 |
H2O + NaCl | 1.50 | −37.32 | 305.62 | 0.9992 |
H2O + Na2SO4 | 1.50 | −35.66 | 324.90 | 0.9991 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.F.; Abdul Rub, M.; Joy, M.T.R.; Molla, M.R.; Azum, N.; Anamul Hoque, M. Influences of NaCl and Na2SO4 on the Micellization Behavior of the Mixture of Cetylpyridinium Chloride + Polyvinyl Pyrrolidone at Several Temperatures. Gels 2022, 8, 62. https://doi.org/10.3390/gels8010062
Ahmed MF, Abdul Rub M, Joy MTR, Molla MR, Azum N, Anamul Hoque M. Influences of NaCl and Na2SO4 on the Micellization Behavior of the Mixture of Cetylpyridinium Chloride + Polyvinyl Pyrrolidone at Several Temperatures. Gels. 2022; 8(1):62. https://doi.org/10.3390/gels8010062
Chicago/Turabian StyleAhmed, Md. Farid, Malik Abdul Rub, Md. Tuhinur R. Joy, Mohammad Robel Molla, Naved Azum, and Md. Anamul Hoque. 2022. "Influences of NaCl and Na2SO4 on the Micellization Behavior of the Mixture of Cetylpyridinium Chloride + Polyvinyl Pyrrolidone at Several Temperatures" Gels 8, no. 1: 62. https://doi.org/10.3390/gels8010062
APA StyleAhmed, M. F., Abdul Rub, M., Joy, M. T. R., Molla, M. R., Azum, N., & Anamul Hoque, M. (2022). Influences of NaCl and Na2SO4 on the Micellization Behavior of the Mixture of Cetylpyridinium Chloride + Polyvinyl Pyrrolidone at Several Temperatures. Gels, 8(1), 62. https://doi.org/10.3390/gels8010062