Features of Luminescent Properties of Alginate Aerogels with Rare Earth Elements as Photoactive Cross-Linking Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Some Physicochemical Characteristics of Aerogel Matrices
2.1.1. Specific Surface Area
2.1.2. The Content of Rare Earth Metals in Cross-Linked Aerogel Matrices
2.2. Effect of Organic Sensitizing Ligands on the Luminescent Properties of Aerogel Polysaccharide Matrices Cross-Linked with REE Ions
2.2.1. Luminescence of Aerogel Films
2.2.2. Features of the Distribution of Impregnated Ligands in the Volume of Aerogels
3. Conclusions
4. Materials and Methods
4.1. Preparation of Alginate Aerogels Cross-Linked with REE Ions
4.2. Impregnation of Aerogels Cross-Linked with REE Ions by the Organic Ligands
4.3. Determination of Luminescent and Physicochemical Characteristics of Cross-Linked Aerogel Matrices
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, C.-H. Rare Earth Coordination Chemistry: Fundamentals and Applications; John Wiley& Sons: Singapore; Hoboken, NJ, USA, 2010. [Google Scholar]
- Liu, J.; Liang, Q.-B.; Wu, H.-B. Synthesis, photophysics, electrochemistry, thermal stability and electroluminescent performances of a new europium complex with bis(β-diketone) ligand containing carbazole group: Luminescent Performances of a New Europium Complex. Luminescence 2016, 32, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Turchetti, D.A.; Domingues, R.A.; Zanlorenzi, C.; Nowacki, B.; Atvars, T.D.Z.; Akcelrud, L.C. A Photophysical Interpretation of the Thermochromism of a Polyfluorene Derivative–Europium Complex. J. Phys. Chem. C 2014, 118, 30079–30086. [Google Scholar] [CrossRef]
- Turchetti, D.A.; Nolasco, M.M.; Szczerbowski, D.; Carlos, L.D.; Akcelrud, L.C. Light emission of a polyfluorene derivative containing complexed europium ions. Phys. Chem. Chem. Phys. 2015, 17, 26238–26248. [Google Scholar] [CrossRef] [PubMed]
- George, M.R.; Critchley, P.E.; Whitehead, G.F.; Bailey, A.J.; Cuda, F.; Murdin, B.N.; Grossel, M.C.; Curry, R.J. Modified pyridine-2,6-dicarboxylate acid ligands for sensitization of near-infrared luminescence from lanthanide ions (Ln3+ = Pr3+, Nd3+, Gd3+, Dy3+, Er3+). J. Lumin 2021, 230, 117715. [Google Scholar] [CrossRef]
- Wang, S.; Chu, X.; Xiang, X.; Cao, Y. Highly selective antenna effect of graphene quantum dots (GQDs): A new fluorescent sensitizer for rare earth element terbium in aqueous media. Talanta 2019, 209, 120504. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.-N.; Yan, B. Near-infrared emission sensitization of lanthanide cation based on Ag+ functionalized metal-organic frameworks. J. Alloy. Compd. 2018, 765, 63–68. [Google Scholar] [CrossRef]
- Sabbatini, N.; Guardigli, M.; Lehn, J.-M. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord. Chem. Rev. 1993, 123, 201–228. [Google Scholar] [CrossRef]
- Fan, W.; Du, J.; Kou, J.; Zhang, Z.; Liu, F. Hierarchical porous cellulose/lanthanide hybrid materials as luminescent sensor. J. Rare Earths 2018, 36, 1036–1043. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Zhu, H.; Xu, Q.-Q.; Liu, F.-Y.; Zhu, A.-X.; Kou, J.-F. Hybrid luminescent alginate hydrogels containing lanthanide with potential for acetone sensing. New J. Chem. 2019, 43, 13205–13211. [Google Scholar] [CrossRef]
- Hai, J.; Li, T.; Su, J.; Liu, W.; Ju, Y.; Wang, B.; Hou, Y.; Liu, W. Reversible Response of Luminescent Terbium(III)-Nanocellulose Hydrogels to Anions for Latent Fingerprint Detection and Encryption. Angew. Chem. 2018, 130, 6902–6906. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, F.; Xu, Q.; Zhu, H.; Zhu, A.; Kou, J. Covalent Grafting Terbium Complex to Alginate Hydrogels and Their Application in Fe3+ and pH Sensing. Glob. Challenges 2019, 3, 1800067. [Google Scholar] [CrossRef]
- Liu, F.; Carlos, L.D.; Ferreira, R.A.S.; Rocha, J.; Gaudino, M.C.; Robitzer, M.; Quignard, F. Photoluminescent Porous Alginate Hybrid Materials Containing Lanthanide Ions. Biomacromolecules 2008, 9, 1945–1950. [Google Scholar] [CrossRef]
- Robitzer, M.; David, L.; Rochas, C.; Di Renzo, F.; Quignard, F. Nanostructure of Calcium Alginate Aerogels Obtained from Multistep Solvent Exchange Route. Langmuir 2008, 24, 12547–12552. [Google Scholar] [CrossRef]
- Sorensen, L.; Strouse, G.F.; Stiegman, A.E. Fabrication of Stable Low-Density Silica Aerogels Containing Luminescent ZnS Capped CdSe Quantum Dots. Adv. Mater. 2006, 18, 1965–1967. [Google Scholar] [CrossRef]
- Tillotson, T.M.; Sunderland, W.E.; Thomas, I.M.; Hrubesh, L.W. Synthesis of lanthanide and lanthanide-silicate aerogels. J. Sol.-Gel Sci. Technol. 1994, 1, 241–249. [Google Scholar] [CrossRef]
- Małecka, M.A.; Kępiński, L. Solid state reactions in highly dispersed single and mixed lanthanide oxide–SiO2 systems. Catal. Today 2012, 180, 117–123. [Google Scholar] [CrossRef]
- Kaplin, V.S.; Kopylov, A.S.; Zarhina, T.S.; Timashev, P.S.; Solov’Eva, A.B. Luminescent Properties of Mixed-Ligand Neodymium β-Diketonates Obtained in Supercritical Carbon Dioxide in Polymer Matrices of Various Nature. Opt. Spectrosc. 2020, 128, 869–876. [Google Scholar] [CrossRef]
- Alwin, S.; Ramasubbu, V.; Shajan, X.S. TiO2 aerogel–metal organic framework nanocomposite: A new class of photoanode material for dye-sensitized solar cell applications. Bull. Mater. Sci. 2018, 41, 27. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Meador, M.A.B.; Scheiman, D.; McCorkle, L. Polyimide Aerogels Using Triisocyanate as Cross-linker. ACS Appl. Mater. Interfaces 2017, 9, 27313–27321. [Google Scholar] [CrossRef]
- Maleki, H.; Durães, L.; Portugal, A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Crystalline Solids 2014, 385, 55–74. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, J.; Thomas, A.; Liao, Y. Ultra-High Surface Area Nitrogen-Doped Carbon Aerogels Derived From a Schiff-Base Porous Organic Polymer Aerogel for CO2 Storage and Supercapacitors. Adv. Funct. Mater. 2019, 29, 1904785. [Google Scholar] [CrossRef]
- Kanimozhi, A.J.; Alexander, V. Synthesis and photophysical and magnetic studies of ternary lanthanide(iii) complexes of naphthyl chromophore functionalized imidazo[4,5-f][1,10]phenanthroline and dibenzoylmethane. Dalton Trans. 2017, 46, 8562–8571. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Luo, Y.; Wang, R.-M.; Yuan, L. Synthesis and fluorescence properties of the mixed complexes of Eu(III) with polymer ligand and thenoyl trifluoroacetone. J. Appl. Polym. Sci. 1997, 66, 755–760. [Google Scholar] [CrossRef]
- Wang, L.-H.; Wang, W.; Zhang, W.-G.; Kang, E.-T.; Huang, W. Synthesis and Luminescence Properties of Novel Eu-Containing Copolymers Consisting of Eu(III)−Acrylate−β-Diketonate Complex Monomers and Methyl Methacrylate. Chem. Mater. 2000, 12, 2212–2218. [Google Scholar] [CrossRef]
- Xu, H.; Sun, Q.; An, Z.; Wei, Y.; Liu, X. Electroluminescence from europium(III) complexes. Co-ord. Chem. Rev. 2015, 293–294, 228–249. [Google Scholar] [CrossRef]
- Freidzon, A.Y.; Kurbatov, I.A.; Vovna, V.I. Ab initio calculation of energy levels of trivalent lanthanide ions. Phys. Chem. Chem. Phys. 2018, 20, 14564–14577. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, T.D.; Shtykov, S.N.; Kochubei, V.I.; Khryachkova, E.S. Excitation energy transfer in europium chelate with doxycycline in the presence of a second ligand in micellar solutions of nonionic surfactants. Opt. Spectrosc. 2011, 110, 60–66. [Google Scholar] [CrossRef]
- Jinghe, Y.; Xuezhen, R.; Huabin, Z.; Ruiping, S. Enhanced luminescence of the europium(III)-terbium(III)-dibenzoylmethane-ammonia-acetone system and its application to the determination of europium. Analyst 1990, 115, 1505–1508. [Google Scholar] [CrossRef]
- Gusev, A.N.; Hasegawa, M.; Shimizu, T.; Fukawa, T.; Sakurai, S.; Nishchymenko, G.A.; Shul’Gin, V.F.; Meshkova, S.B.; Linert, W. Synthesis, structure and luminescence studies of Eu(III), Tb(III), Sm(III), Dy(III) cationic complexes with acetylacetone and bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane. Inorganica Chim. Acta 2013, 406, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Kojić, M.; Lyskov, I.; Milovanović, B.; Marian, C.M.; Etinski, M. The UVA response of enolic dibenzoylmethane: Beyond the static approach. Photochem. Photobiol. Sci. 2019, 18, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- AL-Hilfi, J.A. A Structural Study of 2-Thenoyltrifluoroacetone Schiff Bases and Their Thione Derivatives: Synthesis, NMR and IR. AIP Conference Proceedings. In Proceedings of the 8th International Conference on Applied Science and Technology (ICAST 2020), Karbala, Iraq, 4 December 2020; Volume 2290, p. 030030. [Google Scholar] [CrossRef]
- Ugale, A.; Kalyani, T.N.; Dhoble, S.J. Potential of Europium and Samarium β-Diketonates as Red Light Emitters in Organic Light-Emitting Diodes. In Lanthanide-Based Multifunctional Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 59–97. [Google Scholar] [CrossRef]
- Kopylov, A.S.; Yusupov, V.I.; Cherkasova, A.V.; Shershnev, I.V.; Timashev, P.S.; Solovieva, A.B. The Distribution Features of Photoactive Fillers in Different-Nature Polymer Matrices upon Their Impregnation in a Supercritical Carbon Dioxide Medium. Russ. J. Phys. Chem. B 2018, 12, 1298–1305. [Google Scholar] [CrossRef]
Aerogel Matrix | SSA Average Value, m2/g |
---|---|
Eu AEG | 255 ± 22 |
Tb AEG | 290 ± 43 |
Sm AEG | 270 ± 9 |
Inorganic AEG | ≈100–2300 |
Sample | Metal Content (Experimental), wt.% | Metal Content (Theoretical), wt.% |
---|---|---|
Eu AEG | 19.4 ± 0.3 | 22.4 |
Tb AEG | 20.9 ± 0.2 | 23.2 |
Sm AEG | 17.9 ± 0.2 | 22.2 |
Tta: 20,500 cm−1 | Phen: 22,075 cm−1 | Acac: 25,310 cm−1 | Dbm: 20,300 cm−1 | |
---|---|---|---|---|
Eu (5D0) (17,267 cm−1) | 3233 cm−1 | 4808 cm−1 | 8043 cm−1 | 3033 cm−1 |
Tb (5D4) (20,394 cm−1) | 106 cm−1 | 1681 cm−1 | 4916 cm−1 | −94 cm−1 |
Sm (4G5/2) (17,825 cm−1) | 2675 cm−1 | 4250 cm−1 | 7485 cm−1 | 2475 cm−1 |
Sample | Position of Band Maxima in the Luminescence Excitation Spectra | Changes in the Intensity of Characteristic Luminescence Peaks of REE Ions |
---|---|---|
Initial alginate aerogels cross-linked with REE ions | ||
Eu AEG | 393 nm; 464 nm | 577, 590, 615 (S) |
Tb AEG | 317 nm; 340 nm; 351 nm; 368 nm; 377 nm | 488, 543, 584, 620 (M) |
Sm AEG | -- | 563, 598, 644 (Not detected) |
Matrices impregnated with thenoyltrifluoroacetone (Tta) | ||
Eu AEG +Tta | 363 nm | (S) |
Tb AEG +Tta | 290 nm; 356 nm; 410 nm | (W) |
Sm AEG +Tta | 368 nm | Luminescence (M) |
Matrices impregnated with phenanthroline (Phen) | ||
Eu AEG +Phen | 350 nm | (S) |
Tb AEG +Phen | 347 nm | (S) |
Sm AEG +Phen | 368 nm | (M) |
Matrices impregnated with acetylacetone (Acac) | ||
Eu AEG +Acac | 338 nm | (M) |
Tb AEG +Acac | 304 nm | (S) |
Sm AEG +Acac | -- | No luminescence |
Matrices impregnated with dibenzoylmethane (Dbm) | ||
Eu AEG +Dbm | 386 nm | (W) |
Tb AEG +Dbm | 295 nm | (W) |
Sm AEG +Dbm | 395 nm | Luminescence (W) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaplin, V.; Kopylov, A.; Koryakovtseva, A.; Minaev, N.; Epifanov, E.; Gulin, A.; Aksenova, N.; Timashev, P.; Kuryanova, A.; Shershnev, I.; et al. Features of Luminescent Properties of Alginate Aerogels with Rare Earth Elements as Photoactive Cross-Linking Agents. Gels 2022, 8, 617. https://doi.org/10.3390/gels8100617
Kaplin V, Kopylov A, Koryakovtseva A, Minaev N, Epifanov E, Gulin A, Aksenova N, Timashev P, Kuryanova A, Shershnev I, et al. Features of Luminescent Properties of Alginate Aerogels with Rare Earth Elements as Photoactive Cross-Linking Agents. Gels. 2022; 8(10):617. https://doi.org/10.3390/gels8100617
Chicago/Turabian StyleKaplin, Vladislav, Aleksandr Kopylov, Anastasiia Koryakovtseva, Nikita Minaev, Evgenii Epifanov, Aleksandr Gulin, Nadejda Aksenova, Peter Timashev, Anastasiia Kuryanova, Ilya Shershnev, and et al. 2022. "Features of Luminescent Properties of Alginate Aerogels with Rare Earth Elements as Photoactive Cross-Linking Agents" Gels 8, no. 10: 617. https://doi.org/10.3390/gels8100617
APA StyleKaplin, V., Kopylov, A., Koryakovtseva, A., Minaev, N., Epifanov, E., Gulin, A., Aksenova, N., Timashev, P., Kuryanova, A., Shershnev, I., & Solovieva, A. (2022). Features of Luminescent Properties of Alginate Aerogels with Rare Earth Elements as Photoactive Cross-Linking Agents. Gels, 8(10), 617. https://doi.org/10.3390/gels8100617