Thermoresponsive Cationic Polymers: PFAS Binding Performance under Variable pH, Temperature and Comonomer Composition
Abstract
:1. Introduction
2. Results and Discussion
2.1. Swelling Behavior
2.1.1. Effect of Aqueous pH
2.1.2. Effect of Comonomer Composition
2.2. PFOA Binding Affinity
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Hydrogel Synthesis
4.3. Hydrogel Characterization
4.3.1. FTIR Analysis
4.3.2. Kinetic Swelling Study
4.3.3. Temperature-Dependent Swelling Study
4.3.4. PFOA Binding Affinity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017, 8, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Blum, A.P.; Kammeyer, J.K.; Rush, A.M.; Callmann, C.E.; Hahn, M.E.; Gianneschi, N.C. Stimuli-Responsive Nanomaterials for Biomedical Applications. J. Am. Chem. Soc. 2015, 137, 2140–2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frazar, E.M.; Shah, R.A.; Dziubla, T.D.; Hilt, J.Z. Multifunctional Temperature-Responsive Polymers as Advanced Biomaterials and Beyond. J. Appl. Polym. Sci. 2020, 137, 48770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bawa, P.; Pillay, V.; Choonara, Y.E.; du Toit, L.C. Stimuli-Responsive Polymers and Their Applications in Drug Delivery. Biomed. Mater. 2009, 4, 22001. [Google Scholar] [CrossRef]
- Schmaljohann, D. Thermo- and PH-Responsive Polymers in Drug Delivery. Adv. Drug Deliv. Rev. 2006, 58, 1655–1670. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Ma, J.; Vancso, G.J. Thermoresponsive Semi-IPN Hydrogel Microfibers from Continuous Fluidic Processing with High Elasticity and Fast Actuation. ACS Appl. Mater. Interfaces 2017, 9, 901–908. [Google Scholar] [CrossRef]
- Ganesh, V.A.; Baji, A.; Ramakrishna, S. Smart Functional Polymers—A New Route towards Creating a Sustainable Environment. RSC Adv. 2014, 4, 53352–53364. [Google Scholar] [CrossRef]
- Gray, H.N.; Bergbreiter, D.E. Applications of Polymeric Smart Materials to Environmental Problems. Environ. Health Perspect. 1997, 105, 55–63. [Google Scholar]
- Ju, X.J.; Zhang, S.B.; Zhou, M.Y.; Xie, R.; Yang, L.; Chu, L.Y. Novel Heavy-Metal Adsorption Material: Ion-Recognition P(NIPAM-Co-BCAm) Hydrogels for Removal of Lead(II) Ions. J. Hazard. Mater. 2009, 167, 114–118. [Google Scholar] [CrossRef]
- Phillips, D.J.; Gibson, M.I. Towards Being Genuinely Smart: “isothermally-Responsive” Polymers as Versatile, Programmable Scaffolds for Biologically-Adaptable Materials. Polym. Chem. 2015, 6, 1033–1043. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Bhandari, R.; Delaney, S.P.; Munson, E.J.; Dziubla, T.D.; Hilt, J.Z. Synthesis and Characterization of Thermally Responsive N-Isopropylacrylamide Hydrogels Copolymerized with Novel Hydrophobic Polyphenolic Crosslinkers. Mater. Today Commun. 2017, 10, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Schild, H.G. Poly (N-Isopropylacrylamide): Experiment, Theory and Application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Zhang, Q.; Weber, C.; Schubert, U.S.; Hoogenboom, R. Thermoresponsive Polymers with Lower Critical Solution Temperature: From Fundamental Aspects and Measuring Techniques to Recommended Turbidimetry Conditions. Mater. Horizons 2017, 4, 109–116. [Google Scholar] [CrossRef]
- Shah, R.A.; Frazar, E.M.; Hilt, J.Z. Recent Developments in Stimuli Responsive Nanomaterials and Their Bionanotechnology Applications. Curr. Opin. Chem. Eng. 2020, 30, 103–111. [Google Scholar] [CrossRef]
- Du, H.; Shi, S.; Liu, W.; Teng, H.; Piao, M. Processing and Modification of Hydrogel and Its Application in Emerging Contaminant Adsorption and in Catalyst Immobilization: A Review. Environ. Sci. Pollut. Res. 2020, 27, 12967–12994. [Google Scholar] [CrossRef]
- Gutierrez, A.M.; Frazar, E.M.; Maria, M.V.; Paul, P.; Hilt, J.Z. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare Through Human and Environmental Treatment. Adv. Healthc. Mater. 2022, 11, e2101820. [Google Scholar] [CrossRef]
- Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(N-Isopropylacrylamide)-Based Smart Hydrogels: Design, Properties and Applications. Prog. Mater. Sci. 2021, 115, 100702. [Google Scholar] [CrossRef]
- Yoshida, R.; Sakai, S.K.; Okano, T.; Sakurai, Y. Modulating the Phase Transition Temperature and Thermosensitivity in N-Isopropylacrylamide Copolymer Gels. J. Biomater. Sci. Polym. Ed. 1994, 6, 585–598. [Google Scholar] [CrossRef] [PubMed]
- Karbarz, M.; Mackiewicz, M.; Kaniewska, K.; Marcisz, K.; Stojek, Z. Recent Developments in Design and Functionalization of Micro- and Nanostructural Environmentally-Sensitive Hydrogels Based on N-Isopropylacrylamide. Appl. Mater. Today 2017, 9, 516–532. [Google Scholar] [CrossRef]
- ITRC. Per- and Polyfluoroalkyl Substances (PFAS) Fact Sheets. 2017, pp. 1–2. Available online: https://pfas-1.itrcweb.org/ (accessed on 21 September 2020).
- Bonefeld-Jorgensen, E.C.; Long, M.; Bossi, R.; Ayotte, P.; Asmund, G.; Krüger, T.; Ghisari, M.; Mulvad, G.; Kern, P.; Nzulumiki, P.; et al. Perfluorinated Compounds Are Related to Breast Cancer Risk in Greenlandic Inuit: A Case Control Study. Environ. Health A Glob. Access Sci. Source 2011, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Barry, V.; Winquist, A.; Steenland, K. Perfluorooctanoic Acid (PFOA) Exposures and Incident Cancers among Adults Living near a Chemical Plant. Environ. Health Perspect. 2013, 121, 1313–1318. [Google Scholar] [CrossRef] [PubMed]
- Melzer, D.; Rice, N.; Depledge, M.H.; Henley, W.E.; Galloway, T.S. Association between Serum Perfluorooctanoic Acid (PFOA) and Thyroid Disease in the U.S. National Health and Nutrition Examination Survey. Environ. Health Perspect. 2010, 118, 686–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, A.; Xiao, J.; Ducatman, A. Perfluoroalkyl Chemicals and Chronic Kidney Disease in US Adults. Am. J. Epidemiol. 2011, 174, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Bassler, J.; Ducatman, A.; Elliott, M.; Wen, S.; Wahlang, B.; Barnett, J.; Cave, M.C. Environmental Perfluoroalkyl Acid Exposures Are Associated with Liver Disease Characterized by Apoptosis and Altered Serum Adipocytokines. Environ. Pollut. 2019, 247, 1055–1063. [Google Scholar] [CrossRef]
- Graber, J.M.; Alexander, C.; Laumbach, R.J.; Black, K.; Strickland, P.O.; Georgopoulos, P.G.; Marshall, E.G.; Shendell, D.G.; Alderson, D.; Mi, Z.; et al. Per and Polyfluoroalkyl Substances (PFAS) Blood Levels after Contamination of a Community Water Supply and Comparison with 2013–2014 NHANES. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 172–182. [Google Scholar] [CrossRef]
- Oulhote, Y.; Steuerwald, U.; Debes, F.; Weihe, P.; Grandjean, P. Behavioral Difficulties in 7-Year Old Children in Relation to Developmental Exposure to Perfluorinated Alkyl Substances. Environ. Int. 2016, 97, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Corsini, E.; Luebke, R.W.; Germolec, D.R.; DeWitt, J.C. Perfluorinated Compounds: Emerging POPs with Potential Immunotoxicity. Toxicol. Lett. 2014, 230, 263–270. [Google Scholar] [CrossRef] [PubMed]
- EPA. Drinking Water Health Advisories for PFOA and PFOS; US EPA: Washington, DC, USA, 2022. [Google Scholar]
Polymer ID | Cationic Comonomer | Comonomer Loading (mol%) | NIPAAm Loading (mol%) | Qeq,buff pH 4 | Qeq,buff pH 7 | Qeq,buff pH 10 | Qeq,tit pH 4 | Qeq,tit pH 7 | Qeq,tit pH 10 |
---|---|---|---|---|---|---|---|---|---|
PNIPAAm | -- | -- | 95 | 5.4(0.2) | 5.4(0.2) | 5.5(0.4) | 4.6(0.4) | 4.9(0.1) | 5.6(0.4) |
DMAPA(1) | DMAPA | 1 | 94 | 4.5(0.4) | 4.5(0.7) | 4.6(0.0) | 5.0(1.7) | 6.1(1.1) | 5.5(0.4) |
DMAPA(5) | 5 | 90 | 6.4(0.2) | 6.1(0.1) | 5.5(0.1) | 8.9(1.4) | 9.9(0.6) | 9.4(0.6) | |
DMAPA(10) | 10 | 85 | 6.9(0.1) | 6.9(0.2) | 5.8(0.0) | 7.0(0.6) | 6.3(0.3) | 5.7(0.6) | |
DMAPAQ(1) | DMAPAQ | 1 | 94 | 6.3(0.2) | 6.1(0.2) | 5.9(0.2) | 8.2(1.0) | 8.7(1.0) | 8.3(0.2) |
DMAPAQ(5) | 5 | 90 | 5.5(0.1) | 5.8(0.1) | 5.2(0.2) | 9.3(0.1) | 9.7(0.6) | 9.5(0.6) | |
DMAPAQ(10) | 10 | 85 | 6.1(0.1) | 6.2(0.2) | 5.5(0.1) | 6.1(0.1) | 6.8(0.8) | 6.9(1.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frazar, E.M.; Smith, A.; Dziubla, T.; Hilt, J.Z. Thermoresponsive Cationic Polymers: PFAS Binding Performance under Variable pH, Temperature and Comonomer Composition. Gels 2022, 8, 668. https://doi.org/10.3390/gels8100668
Frazar EM, Smith A, Dziubla T, Hilt JZ. Thermoresponsive Cationic Polymers: PFAS Binding Performance under Variable pH, Temperature and Comonomer Composition. Gels. 2022; 8(10):668. https://doi.org/10.3390/gels8100668
Chicago/Turabian StyleFrazar, E. Molly, Anicah Smith, Thomas Dziubla, and J. Zach Hilt. 2022. "Thermoresponsive Cationic Polymers: PFAS Binding Performance under Variable pH, Temperature and Comonomer Composition" Gels 8, no. 10: 668. https://doi.org/10.3390/gels8100668
APA StyleFrazar, E. M., Smith, A., Dziubla, T., & Hilt, J. Z. (2022). Thermoresponsive Cationic Polymers: PFAS Binding Performance under Variable pH, Temperature and Comonomer Composition. Gels, 8(10), 668. https://doi.org/10.3390/gels8100668