Hydrophobic Modification of ZrO2-SiO2 Xerogel and Its Adsorption Properties to Rhodamine B
Abstract
:1. Introduction
2. Experimental Section
2.1. Sol Preparation
2.1.1. Preparation of ZrO2 Sol
2.1.2. Preparation of Hydrophilic SiO2 Sol
2.1.3. Preparation of Hydrophobic SiO2 Sol
2.1.4. Preparation of Hydrophilic and Hydrophobic ZrO2-SiO2 Sols
2.2. Preparation of Xerogels
2.3. Characterization
2.4. Water Adsorption Measurement
2.5. Adsorption Performance Test
2.6. Desorption Performance Test
3. Results and Discussion
3.1. FTIR Analysis
3.2. Phase Structure Analysis
3.3. Pore Structure Analysis
3.4. SEM Analysis
3.5. Water Absorption Analysis
3.6. Adsorption Performance Studies
3.6.1. Effect of Adsorption Time and Temperature
3.6.2. Effect of Dosage
3.6.3. Effect of pH
3.7. Adsorption Kinetic Analysis
3.8. Adsorption Isotherm Analysis
4. Reusability of Xerogel Adsorbent
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richardson, S.D.; Willson, C.S.; Rusch, K.A. Use of rhodamine water tracer in the marshland upwelling system. Groundwater 2004, 42, 678–688. [Google Scholar] [CrossRef]
- Li, W.; Mu, B.; Yang, Y. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresour. Technol. 2019, 277, 157–170. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Amir, M.; Kurtan, U.; Baykal, A. Rapid color degradation of organic dyes by Fe3O4@ His@ Ag recyclable magnetic nanocatalyst. J. Ind. Eng. Chem. 2015, 27, 347–353. [Google Scholar] [CrossRef]
- Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247–255. [Google Scholar] [CrossRef]
- Ma, Y.; Yao, J. Photodegradation of Rhodamine B catalyzed by TiO2 thin films. J. Photochem. Photobiol. A Chem. 1998, 116, 167–170. [Google Scholar] [CrossRef]
- Othman, N.H.; Alias, N.H.; Shahruddin, M.Z.; Abu Bakar, N.F.; Him, N.R.N.; Lau, W.J. Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. J. Environ. Chem. Eng. 2018, 6, 2803–2811. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Simchi, A.; Far, H.S. Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics studies. J. Ind. Eng. Chem. 2020, 81, 405–414. [Google Scholar] [CrossRef]
- Brillas, E.; Martínez-Huitle, C.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. Appl. Catal. B Environ. 2015, 166, 603–643. [Google Scholar] [CrossRef]
- Molla, A.; Li, Y.; Mandal, B.; Kang, S.G.; Hur, S.H.; Chung, J.S. Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis. Appl. Surf. Sci. 2019, 464, 170–177. [Google Scholar] [CrossRef]
- Xaba, M.S.; Noh, J.H.; Mokgadi, K.; Meijboom, R. Kinetic and catalytic analysis of mesoporous metal oxides on the oxidation of Rhodamine B. Appl. Surf. Sci. 2018, 440, 1130–1142. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X. Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of Rhodamine B in food materials. Food Chem. 2016, 200, 10–15. [Google Scholar] [CrossRef]
- Kyzas, G.Z. A Decolorization Technique with Spent “Greek Coffee” Grounds as Zero-Cost Adsorbents for Industrial Textile. Wastewaters Mater. 2012, 5, 2069–2087. [Google Scholar]
- Khan, T.A.; Dahiya, S.; Ali, I. Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the ad-sorption of Rhodamine B from aqueous solution. Appl. Clay Sci. 2012, 69, 58–66. [Google Scholar] [CrossRef]
- Gole, J.L.; Prokes, S.M.; Stout, J.D.; Glembocki, O.J.; Yang, R. Unique Properties of Selectively Formed Zirconia Nanostructures. Adv. Mater. 2006, 18, 664–667. [Google Scholar] [CrossRef]
- Liu, H.; Sha, W.; Cooper, A.T.; Fan, M. Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloids Surf. A Physicochem. Eng. Asp. 2009, 347, 38–44. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Liu, J.; Xu, Y.; Qian, G. Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environ. Rev. 2016, 24, 319–332. [Google Scholar] [CrossRef]
- Ali, A.A.; Shama, S.A.; Amin, A.S.; EL-Sayed, S.R. Synthesis and characterization of ZrO2/CeO2 nanocomposites for efficient removal of Acid Green 1 dye from aqueous solution. Mater. Sci. Eng. B 2021, 269, 115167. [Google Scholar] [CrossRef]
- Lin, Y.F.; Liang, F.L. ZrO2/carbon aerogel composites: A study on the effect of the crystal ZrO2 structure on cationic dye adsorption. Taiwan. Inst Chem. 2016, 65, 78–82. [Google Scholar] [CrossRef]
- Shishmakov, A.B.; Mikushina, Y.V.; Petrov, L.A. Synthesis of TiO2 and TiO2-SiO2 xerogels by hydrolysis of tetrabutoxytitanium and tetraethoxysilane in acetic acid atmosphere. Russ. Chem. Bull. 2018, 67, 1530–1533. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Zhao, Y.; Mu, R.; Li, B.; Hou, H. Performance analysis and comparison of methyl-modified Al2O3/SiO2 xerogels fabricated by two methods. Int. J. Mater. Res. 2021, 112, 17–24. [Google Scholar] [CrossRef]
- Shishmakov, A.B.; Molochnikov, L.S.; Antonov, D.O.; Mikushina, Y.V.; Koryakova, O.V.; Petrov, L.A. Synthesis of ZrO2-SiO2 and ZrO2-SiO2-Cu (II) xerogels by joint hydrolysis in an aqueous ammonia atmosphere. Russ. Inorganic. Chem. 2016, 61, 1085–1091. [Google Scholar]
- Viter, V.N. Sol-gel synthesis of mesoporous mixed oxides in the ZrO2-SiO2 system. Russ. J. Appl. Chem. 2010, 83, 195–199. [Google Scholar] [CrossRef]
- Huang, G.; Li, W.; Song, Y. Preparation of SiO2-ZrO2 xerogel and its application for the removal of organic dye. J. Sol-Gel Sci. Technol. 2018, 86, 175–186. [Google Scholar] [CrossRef]
- Santos, M.A.F.; Lôbo, I.P.; Cruz, R.S. Synthesis and characterization of novel ZrO2-SiO2 mixed oxides. Mater. Res. 2014, 17, 700–707. [Google Scholar] [CrossRef] [Green Version]
- Catauro, M.; Barrino, F.; Dal Poggetto, G.; Milazzo, M.; Blanco, I.; Ciprioti, S.V. Structure, drug absorption, bioactive and antibacterial properties of sol-gel SiO2/ZrO2 materials. Ceram. Int. 2020, 46, 29459–29465. [Google Scholar] [CrossRef]
- Aljerf, L. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: Kinetics and equilibrium study. J. Environ. Manag. 2018, 225, 120–132. [Google Scholar] [CrossRef]
- Cireli, A.; Onar, N.; Ebeoglugil, M.F.; Kayatekin, I.; Kutlu, B.; Culha, O.; Celik, E. Development of flame retardancy properties of new halogen-free phosphorous doped SiO2 thin films on fabrics. J. Appl. Polym. Sci. 2007, 105, 3748–3756. [Google Scholar] [CrossRef]
- Padovini, D.S.S.; Magdalena, A.G.; Capeli, R.G.; Longo, E.; Dalmaschio, C.J.; Chiquito, A.J.; Pontes, F.M. Synthesis and characterization of ZrO2@SiO2 core-shell nanostructure as nanocatalyst: Application for environmental remediation of rhodamine B dye aqueous solution. Mater. Chem. Phys. 2019, 233, 1–8. [Google Scholar] [CrossRef]
- Puthai, W.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. SiO2-ZrO2 nanofiltration membranes of different Si/Zr molar ratios: Stability in hot water and acid/alkaline solutions. J. Membr. Sci. 2017, 524, 700–711. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, G.; Xue, Y.; Li, L. Hydrated surface structure and its impacts on the stabilization of t-ZrO2. J. Solid State Chem. 2007, 180, 2790–2797. [Google Scholar] [CrossRef]
- Doğan, M.; Alkan, M.; Demirbaş, Ö.; Özdemir, Y.; Özmetin, C. Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chem. Eng. J. 2006, 124, 89–101. [Google Scholar] [CrossRef]
- Mohammadnejad, M.; Hajiashrafi, T.; Rashnavadi, R. An erbium-organic framework as an adsorbent for the fast and selective adsorption of methylene blue from aqueous solutions. Porous Mat. 2017, 25, 761–769. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Islam, M.A.; Asif, M.; Hameed, B.H. Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics. Bioresour. Technol. 2017, 243, 778–784. [Google Scholar] [CrossRef]
- Xiong, X.J.; Meng, X.J.; Zheng, T.L. Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger. Hazard. Mater. 2010, 175, 241–246. [Google Scholar] [CrossRef]
- Otalvaro, J.O.; Avena, M.; Brigante, M. Adsorption of norfloxacin on a hexagonal mesoporous silica: Isotherms, kinetics and adsorbent reuse. Adsorption 2019, 25, 1375–1385. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Y.; Yang, Y.; Zou, K.; Wu, R.; Xia, K.; Xie, S. Synthesis of polyethylenimine/graphene oxide for the adsorption of U(VI) from aqueous solution. Appl. Surf. Sci. 2019, 471, 88–95. [Google Scholar] [CrossRef]
- Rani, S.; Mahajan, R.K. Equilibrium, kinetics and thermodynamic parameters for adsorptive removal of dye Basic Blue 9 by ground nut shells and Eichhornia. Arab. J. Chem. 2016, 9, S1464–S1477. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Hall, K.R.; Eagleton, L.C.; Acrivos, A.; Vermeulen, T. Pore-and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions. Ind. Eng. Chem. Fundam. 1966, 5, 212–223. [Google Scholar] [CrossRef]
- Sherry, H.S.; Walton, H.F. The ion-exchange properties of zeolites. II. Ion exchange in the synthetic zeolite Linde 4A. Phys. Chem. 1967, 71, 1457–1465. [Google Scholar] [CrossRef]
- Panneer, S.P.; Preethi, S.; Basakaralingam, P.; Thinakaran, N.; Sivasamy, A.; Sivanesan, S. Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. J. Hazard. Mater. 2008, 155, 39–44. [Google Scholar]
- Magdalena, P.K.; Joanna, G.; Robert, P. Removal of rhodamine B from water by modified carbon xerogels. Colloids Surf. A Physicochem. Eng. Asp. 2018, 543, 109–117. [Google Scholar]
Samples | BET Surface Area (m2·g−1) | Average Pore Size (nm) | Vtotal (STP) (cm3·g−1) |
---|---|---|---|
hydrophilic ZrO2-SiO2 | 310.13 | 2.16 | 0.27 |
hydrophobic ZrO2-SiO2 | 504.78 | 2.35 | 0.43 |
Kinetic Model | Kinetic Parameters | Temperature (K) | ||
---|---|---|---|---|
298.15 | 308.15 | 318.15 | ||
qe | 169.23 | 170.05 | 178.98 | |
Pseudo–first-order | K1 | 0.0068 | 0.0058 | 0.0075 |
R2 | 0.9112 | 0.9886 | 0.9768 | |
Pseudo–second-order | K2 | 0.0083 | 0.0063 | 0.0071 |
R2 | 0.9805 | 0.9832 | 0.9961 | |
intra-particle diffusion | Kdi | 2.1038 | 2.9532 | 3.8449 |
R2 | 0.9015 | 0.9594 | 0.9483 |
Adsorption Isotherm | Isothermal Parameters | Temperature (K) | ||
---|---|---|---|---|
298.15 | 308.15 | 318.15 | ||
Langmuir | b | 0.0031 | 0.0039 | 0.0042 |
qm | 139.77 | 154.64 | 173.53 | |
R2 | 0.9924 | 0.9939 | 0.9961 | |
RL | 0.1231 | 0.1191 | 0.1123 | |
Freundlich | KF | 18.1367 | 8.6576 | 8.3704 |
1/n | 0.5138 | 0.7471 | 0.7789 | |
R2 | 0.8826 | 0.9647 | 0.9631 | |
D–R | E | 4.0285 | 4.1893 | 4.7584 |
R2 | 0.9302 | 0.9951 | 0.8438 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, J. Hydrophobic Modification of ZrO2-SiO2 Xerogel and Its Adsorption Properties to Rhodamine B. Gels 2022, 8, 675. https://doi.org/10.3390/gels8100675
Liu Y, Yang J. Hydrophobic Modification of ZrO2-SiO2 Xerogel and Its Adsorption Properties to Rhodamine B. Gels. 2022; 8(10):675. https://doi.org/10.3390/gels8100675
Chicago/Turabian StyleLiu, Yan, and Jing Yang. 2022. "Hydrophobic Modification of ZrO2-SiO2 Xerogel and Its Adsorption Properties to Rhodamine B" Gels 8, no. 10: 675. https://doi.org/10.3390/gels8100675
APA StyleLiu, Y., & Yang, J. (2022). Hydrophobic Modification of ZrO2-SiO2 Xerogel and Its Adsorption Properties to Rhodamine B. Gels, 8(10), 675. https://doi.org/10.3390/gels8100675