Organic Bio-Based Aerogel from Food Waste: Preparation and Hydrophobization
Abstract
:1. Introduction
2. Materials
2.1. Sample Preparation
2.2. Surface Modification
3. Characterization Techniques
4. Results and Discussion
4.1. Morphological Analysis
4.2. Physical Properties
4.3. Water Vapor Uptake
4.4. Wetting Ability
4.5. ATR-FTIR Spectroscopy
4.6. Thermal Stability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woignier, T.; Duffours, L. Densification and Strengthening of Aerogels by Sintering Heat Treatments or Plastic Compression. Gels 2018, 4, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maleki, H.; Durães, L.; García-González, C.A.; del Gaudio, P.; Portugal, A.; Mahmoudi, M. Synthesis and Biomedical Applications of Aerogels: Possibilities and Challenges. Adv. Colloid Interface Sci. 2016, 236, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Maleki, H.; Hüsing, N. Aerogels as Promising Materials for Environmental Remediation—A Broad Insight into the Environmental Pollutants Removal through Adsorption and (Photo)Catalytic Processes. In New Polymer Nanocomposites for Environmental Remediation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 389–436. [Google Scholar]
- Gao, T.; Jelle, B.P.; Gustavsen, A.; Jacobsen, S. Aerogel-Incorporated Concrete: An Experimental Study. Constr. Build. Mater. 2014, 52, 130–136. [Google Scholar] [CrossRef]
- Tran, D.T.; Nguyen, S.T.; Do, N.D.; Thai, N.N.T.; Thai, Q.B.; Huynh, H.K.P.; Nguyen, V.T.T.; Phan, A.N. Green Aerogels from Rice Straw for Thermal, Acoustic Insulation and Oil Spill Cleaning Applications. Mater. Chem. Phys. 2020, 253, 123363. [Google Scholar] [CrossRef]
- Manzocco, L.; Mikkonen, K.S.; García-González, C.A. Aerogels as Porous Structures for Food Applications: Smart Ingredients and Novel Packaging Materials. Food Struct. 2021, 28, 100188. [Google Scholar] [CrossRef]
- Carraher, C.E. General Topics: Silica Aerogels—Properties and Uses. Polym. News 2005, 30, 386–388. [Google Scholar] [CrossRef]
- Long, L.-Y.; Weng, Y.-X.; Wang, Y.-Z. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers 2018, 10, 623. [Google Scholar] [CrossRef] [Green Version]
- Nita, L.E.; Ghilan, A.; Rusu, A.G.; Neamtu, I.; Chiriac, A.P. New Trends in Bio-Based Aerogels. Pharmaceutics 2020, 12, 449. [Google Scholar] [CrossRef]
- Wei, S.; Ching, Y.C.; Chuah, C.H. Synthesis of Chitosan Aerogels as Promising Carriers for Drug Delivery: A Review. Carbohydr. Polym. 2020, 231, 115744. [Google Scholar] [CrossRef]
- Ganesan, K.; Budtova, T.; Ratke, L.; Gurikov, P.; Baudron, V.; Preibisch, I.; Niemeyer, P.; Smirnova, I.; Milow, B. Review on the Production of Polysaccharide Aerogel Particles. Materials 2018, 11, 2144. [Google Scholar] [CrossRef]
- Baudron, V.; Taboada, M.; Gurikov, P.; Smirnova, I.; Whitehouse, S. Production of Starch Aerogel in Form of Monoliths and Microparticles. Colloid Polym. Sci. 2020, 298, 477–494. [Google Scholar] [CrossRef] [Green Version]
- Ojha, S.; Bußler, S.; Schlüter, O.K. Food Waste Valorisation and Circular Economy Concepts in Insect Production and Processing. Waste Manag. 2020, 118, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-Products—A Case Study on Circular Economy Approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Shao, L.; Ruan, Z.; Hu, W.; Lu, L.; Chen, Y. Converting Untreated Waste Office Paper and Chitosan into Aerogel Adsorbent for the Removal of Heavy Metal Ions. Carbohydr. Polym. 2018, 193, 221–227. [Google Scholar] [CrossRef]
- He, M.; Alam, M.K.; Liu, H.; Zheng, M.; Zhao, J.; Wang, L.; Liu, L.; Qin, X.; Yu, J. Textile Waste Derived Cellulose Based Composite Aerogel for Efficient Solar Steam Generation. Compos. Commun. 2021, 28, 100936. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, T.; Yang, D.; Qiu, F.; Li, Z. Hybrid Aerogels Derived from Banana Peel and Waste Paper for Efficient Oil Absorption and Emulsion Separation. J. Clean. Prod. 2018, 199, 411–419. [Google Scholar] [CrossRef]
- Wu, X.-L.; Wen, T.; Guo, H.-L.; Yang, S.; Wang, X.; Xu, A.-W. Biomass-Derived Sponge-like Carbonaceous Hydrogels and Aerogels for Supercapacitors. ACS Nano 2013, 7, 3589–3597. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Y.; Wang, Y.; You, L.; Shen, X.; Li, S. An Environmentally Friendly Carbon Aerogels Derived from Waste Pomelo Peels for the Removal of Organic Pollutants/Oils. Microporous Mesoporous Mater. 2017, 241, 285–292. [Google Scholar] [CrossRef]
- International Coffee Organization. Last Access September 2021. Available online: https://www.ico.org/ (accessed on 20 October 2022).
- Dávila-Guzmán, N.E.; de Jesús Cerino-Córdova, F.; Soto-Regalado, E.; Rangel-Mendez, J.R.; Díaz-Flores, P.E.; Garza-Gonzalez, M.T.; Loredo-Medrano, J.A. Copper Biosorption by Spent Coffee Ground: Equilibrium, Kinetics, and Mechanism. CLEAN-Soil Air Water 2013, 41, 557–564. [Google Scholar] [CrossRef]
- García-García, D.; Carbonell, A.; Samper, M.D.; García-Sanoguera, D.; Balart, R. Green Composites Based on Polypropylene Matrix and Hydrophobized Spend Coffee Ground (SCG) Powder. Compos. Part B Eng. 2015, 78, 256–265. [Google Scholar] [CrossRef]
- Kua, T.-A.; Arulrajah, A.; Horpibulsuk, S.; Du, Y.-J.; Suksiripattanapong, C. Engineering and Environmental Evaluation of Spent Coffee Grounds Stabilized with Industrial By-Products as a Road Subgrade Material. Clean Technol. Environ. Policy 2017, 19, 63–75. [Google Scholar] [CrossRef]
- López-Maldonado, E.A.; Hernández-García, H.; Zamudio-Aguilar, M.A.M.; Oropeza-Guzmán, M.T.; Ochoa-Terán, A.; López-Martínez, L.M.; Martinez-Quiroz, M.; Valdez, R.; Olivas, A. Chemical Issues of Coffee and Tule Lignins as Ecofriendly Materials for the Effective Removal of Hazardous Metal Ions Contained in Metal Finishing Wastewater. Chem. Eng. J. 2020, 397, 125384. [Google Scholar] [CrossRef]
- Yates, M.; Gomez, M.R.; Martin-Luengo, M.A.; Ibañez, V.Z.; Martinez Serrano, A.M. Multivalorization of Apple Pomace towards Materials and Chemicals. Waste to Wealth. J. Clean. Prod. 2017, 143, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Vidović, S.; Tepić Horecki, A.; Vladić, J.; Šumić, Z.; Gavarić, A.; Vakula, A. Apple. In Valorization of Fruit Processing By-Products; Elsevier: Amsterdam, The Netherlands, 2020; pp. 17–42. [Google Scholar]
- Sudha, M.L. Apple Pomace (By-Product of Fruit Juice Industry) as a Flour Fortification Strategy. In Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 395–405. [Google Scholar]
- Leal, S.; Cristelo, C.; Silvestre, S.; Fortunato, E.; Sousa, A.; Alves, A.; Correia, D.M.; Lanceros-Mendez, S.; Gama, M. Hydrophobic Modification of Bacterial Cellulose Using Oxygen Plasma Treatment and Chemical Vapor Deposition. Cellulose 2020, 27, 10733–10746. [Google Scholar] [CrossRef]
- Yao, M.Z.; Liu, Y.; Qin, C.N.; Meng, X.J.; Cheng, B.X.; Zhao, H.; Wang, S.F.; Huang, Z.Q. Facile Fabrication of Hydrophobic Cellulose-Based Organic/Inorganic Nanomaterial Modified with POSS by Plasma Treatment. Carbohydr. Polym. 2021, 253, 117193. [Google Scholar] [CrossRef] [PubMed]
- Namazi, H.; Fathi, F.; Dadkhah, A. Hydrophobically Modified Starch Using Long-Chain Fatty Acids for Preparation of Nanosized Starch Particles. Sci. Iran. 2011, 18, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Schroeter, B.; Yonkova, V.P.; Niemeyer, N.A.M.; Jung, I.; Preibisch, I.; Gurikov, P.; Smirnova, I. Cellulose Aerogel Particles: Control of Particle and Textural Properties in Jet Cutting Process. Cellulose 2021, 28, 223–239. [Google Scholar] [CrossRef]
- Odalanowska, M.; Woźniak, M.; Ratajczak, I.; Zielińska, D.; Cofta, G.; Borysiak, S. Propolis and Organosilanes as Innovative Hybrid Modifiers in Wood-Based Polymer Composites. Materials 2021, 14, 464. [Google Scholar] [CrossRef]
- Hokkanen, S.; Sillanpää, M. Nano- and Microcellulose-Based Adsorption Materials in Water Treatment. In Advanced Water Treatment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–83. [Google Scholar]
- Pujol, D.; Liu, C.; Gominho, J.; Olivella, M.À.; Fiol, N.; Villaescusa, I.; Pereira, H. The Chemical Composition of Exhausted Coffee Waste. Ind. Crops Prod. 2013, 50, 423–429. [Google Scholar] [CrossRef]
- Zanini, M.; Lavoratti, A.; Lazzari, L.K.; Galiotto, D.; Pagnocelli, M.; Baldasso, C.; Zattera, A.J. Producing Aerogels from Silanized Cellulose Nanofiber Suspension. Cellulose 2017, 24, 769–779. [Google Scholar] [CrossRef]
- Gowman, A.C.; Picard, M.C.; Rodriguez-Uribe, A.; Misra, M.; Khalil, H.; Thimmanagari, M.; Mohanty, A.K. Physicochemical Analysis of Apple and Grape Pomaces. BioResources 2019, 14, 3210–3230. [Google Scholar] [CrossRef]
- Liao, Q.; Su, X.; Zhu, W.; Hua, W.; Qian, Z.; Liu, L.; Yao, J. Flexible and Durable Cellulose Aerogels for Highly Effective Oil/Water Separation. RSC Adv. 2016, 6, 63773–63781. [Google Scholar] [CrossRef]
- Wu, L.-Y.; Guo, Y.-L.; Cao, L.-L.; Jin, S.; Lin, H.-Z.; Wu, M.-Y.; Lin, J.-K.; Ye, J.-H. Application of NaOH-HCl-Modified Apple Pomace to Binding Epigallocatechin Gallate. Food Bioprocess Technol. 2016, 9, 917–923. [Google Scholar] [CrossRef]
- Zarrinbakhsh, N.; Wang, T.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Characterization of Wastes and Coproducts from the Coffee Industry for Composite Material Production. Bio Resour. 2016, 11, 7637–7653. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Kwek, L.P.; Le, D.K.; Tan, M.S.; Duong, H.M. Fabrication and Properties of Hybrid Coffee-Cellulose Aerogels from Spent Coffee Grounds. Polymers 2019, 11, 1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero, M.R.B.; Marques da Silva Paula, M.; Zaragoza, M.M.; Gutiérrez, J.S.; Velderrain, V.G.; Ortiz, A.L.; Collins-Martínez, V. Thermogravimetric Study on the Pyrolysis Kinetics of Apple Pomace as Waste Biomass. Int. J. Hydrogen Energy 2014, 39, 16619–16627. [Google Scholar] [CrossRef]
- Baldinelli, A.; Dou, X.; Buchholz, D.; Marinaro, M.; Passerini, S.; Barelli, L. Addressing the Energy Sustainability of Biowaste-Derived Hard Carbon Materials for Battery Electrodes. Green Chem. 2018, 20, 1527–1537. [Google Scholar] [CrossRef]
SBET (m2/g) | ρ (g/cm3) | |||
---|---|---|---|---|
Treatment/Sample | CA | AA | CA | AA |
Pristine | 229 ± 20 | 208 ± 20 | 0.191 ± 0.004 | 0.016 ± 0.001 |
After LPM | 152 ± 20 | 75 ± 20 | 0.207 ± 0.001 | 0.026 ± 0.001 |
After GPM | n.d. | 11 ± 20 | 0.265 ± 0.001 | 0.032 ± 0.001 |
Water Absorption (%) | ||
---|---|---|
Treatment/Sample | CA | AA |
Pristine | 13.4 ± 0.9 | 15.6 ± 0.4 |
After LPM | 14.8 ± 0.6 | 22 ± 3 |
After GPM | 14 ± 2 | 12 ± 1 |
Treatment/Sample | CA 5 s 60 s | AA 5 s 60 s |
---|---|---|
Pristine | ||
After LPM | ||
After GPM |
θ5s (°) | θ60s (°) | θ5s (°) | θ60s (°) | |
---|---|---|---|---|
Treatment/Sample | CA | AA | ||
Pristine | 50 ± 2 | n.d. | 50 ± 2 | n.d. |
After LPM | 43 ± 3 | n.d. | 49 ± 2 | n.d. |
After GPM | 97 ± 3 | 97 ± 3 | 100 ± 3 | 100 ± 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaggero, G.; Subrahmanyam, R.P.; Schroeter, B.; Gurikov, P.; Delucchi, M. Organic Bio-Based Aerogel from Food Waste: Preparation and Hydrophobization. Gels 2022, 8, 691. https://doi.org/10.3390/gels8110691
Gaggero G, Subrahmanyam RP, Schroeter B, Gurikov P, Delucchi M. Organic Bio-Based Aerogel from Food Waste: Preparation and Hydrophobization. Gels. 2022; 8(11):691. https://doi.org/10.3390/gels8110691
Chicago/Turabian StyleGaggero, Giulia, Raman P. Subrahmanyam, Baldur Schroeter, Pavel Gurikov, and Marina Delucchi. 2022. "Organic Bio-Based Aerogel from Food Waste: Preparation and Hydrophobization" Gels 8, no. 11: 691. https://doi.org/10.3390/gels8110691
APA StyleGaggero, G., Subrahmanyam, R. P., Schroeter, B., Gurikov, P., & Delucchi, M. (2022). Organic Bio-Based Aerogel from Food Waste: Preparation and Hydrophobization. Gels, 8(11), 691. https://doi.org/10.3390/gels8110691