Quantum Chemical Calculation for Intermolecular Interactions of Alginate Dimer-Water Molecules
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimized Structures of Alginate and Water Molecules
2.2. NBO Analysis
2.3. Quantum Theory Atom in Molecule (QTAIM)
2.4. HOMO-LUMO Energy Analysis
2.5. Reduced Density Gradient (RDG) and Non-Covalent Interaction (NCI) Analysis
3. Conclusions
4. Methods
4.1. Computational Analysis Using the Density Functional Theory (DFT-D3) Method
4.2. Natural Bond Orbital (NBO)
4.3. Quantum Theory Atom in Molecule (QTAIM) Analysis
4.4. HOMO-LUMO Energy Analysis
4.5. Reduced Density Gradient (RDG) and Non-Covalent Interaction (NCI)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Huang, G.; Zhang, X.; Li, B.; Chen, Y.; Lu, T.; Lu, T.J.; Xu, F. Magnetic Hydrogels and Their Potential Biomedical Applications. Adv. Funct. Mater. 2013, 23, 660–672. [Google Scholar] [CrossRef]
- Abou-Yousef, H.; Dacrory, S.; Hasanin, M.; Saber, E.; Kamel, S. Biocompatible Hydrogel Based on Aldehyde-Functionalized Cellulose and Chitosan for Potential Control Drug Release. Sustain. Chem. Pharm. 2021, 21, 100419. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Abasalizadeh, F.; Moghaddam, S.V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S.M.B.; Torbati, M.; Akbarzadeh, A. Alginate-Based Hydrogels as Drug Delivery Vehicles in Cancer Treatment and Their Applications in Wound Dressing and 3D Bioprinting. J. Biol. Eng. 2020, 14, 1–22. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, J.; Ao, Q. Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar. Drugs 2021, 19, 264. [Google Scholar] [CrossRef]
- Ma, G.; Ran, F.; Yang, Q.; Feng, E.; Lei, Z. Eco-Friendly Superabsorbent Composite Based on Sodium Alginate and Organo-Loess with High Swelling Properties. RSC Adv. 2015, 5, 53819–53828. [Google Scholar] [CrossRef]
- Pawar, S.N.; Edgar, K.J. Alginate Derivatization: A Review of Chemistry, Properties and Applications. Biomaterials 2012, 33, 3279–3305. [Google Scholar] [CrossRef]
- Jalababu, R.; Veni, S.S.; Reddy, K.V.N.S. Synthesis and Characterization of Dual Responsive Sodium Alginate-g-Acryloyl Phenylalanine-Poly N-Isopropyl Acrylamide Smart Hydrogels for the Controlled Release of Anticancer Drug. J. Drug Deliv. Sci. Technol. 2018, 44, 190–204. [Google Scholar] [CrossRef]
- Lima, D.S.; Tenório-Neto, E.T.; Lima-Tenório, M.K.; Guilherme, M.R.; Scariot, D.B.; Nakamura, C.V.; Muniz, E.C.; Rubira, A.F. PH-Responsive Alginate-Based Hydrogels for Protein Delivery. J. Mol. Liq. 2018, 262, 29–36. [Google Scholar] [CrossRef]
- Anugrah, D.S.B.; Ramesh, K.; Kim, M.; Hyun, K.; Lim, K.T. Near-Infrared Light-Responsive Alginate Hydrogels Based on Diselenide-Containing Cross-Linkage for on Demand Degradation and Drug Release. Carbohydr. Polym. 2019, 223, 115070. [Google Scholar] [CrossRef] [PubMed]
- Siboro, S.A.P.; Anugrah, D.S.B.; Ramesh, K.; Park, S.-H.; Kim, H.-R.; Lim, K.T. Tunable Porosity of Covalently Crosslinked Alginate-Based Hydrogels and Its Significance in Drug Release Behavior. Carbohydr. Polym. 2021, 260, 117779. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.I.; Park, K.M.; Park, K.D. Oxygen-Generating Alginate Hydrogels as a Bioactive Acellular Matrix for Facilitating Wound Healing. J. Ind. Eng. Chem. 2019, 69, 397–404. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, C.; Wang, T.; Chen, J.; Sun, S.K. In Situ Fabrication of Intelligent Photothermal Indocyanine Green-Alginate Hydrogel for Localized Tumor Ablation. ACS Appl. Mater. Interfaces 2019, 11, 2782–2789. [Google Scholar] [CrossRef] [PubMed]
- Urzedo, A.L.; Gonçalves, M.C.; Nascimento, M.H.M.; Lombello, C.B.; Nakazato, G.; Seabra, A.B. Cytotoxicity and Antibacterial Activity of Alginate Hydrogel Containing Nitric Oxide Donor and Silver Nanoparticles for Topical Applications. ACS Biomater. Sci. Eng. 2020, 6, 2117–2134. [Google Scholar] [CrossRef] [PubMed]
- Bekri, L.; Zouaoui-Rabah, M.; Springborg, M.; Rahal, M.S. A Structural DFT Study of MM, GG, MG, and GM Alginic Acid Disaccharides and Reactivity of the MG Metallic Complexes. J. Mol. Model. 2018, 24. [Google Scholar] [CrossRef]
- Sanchez-Ballester, N.M.; Bataille, B.; Soulairol, I. Sodium Alginate and Alginic Acid as Pharmaceutical Excipients for Tablet Formulation: Structure-Function Relationship. Carbohydr. Polym. 2021, 270, 118399. [Google Scholar] [CrossRef]
- Li, Z.J.; Srebnik, S.; Rojas, O.J. Competing Effects of Hydration and Cation Complexation in Single-Chain Alginate. Biomacromolecules 2022, 23, 1949–1957. [Google Scholar] [CrossRef]
- Ardiles, C.S.; Rodríguez, C.C. Theoretical Study for Determining the Type of Interactions between a GG Block of an Alginate Chain with Metals Cu2+, Mn2+, Ca2+ and Mg2+. Arab. J. Chem. 2021, 14, 103325. [Google Scholar] [CrossRef]
- Singla, N.; Chowdhury, P. Density Functional Investigation of Photo Induced Intramolecular Proton Transfer (IPT) in Indole-7-Carboxaldehyde and Its Experimental Verification. J. Mol. Struct. 2013, 1045, 72–80. [Google Scholar] [CrossRef]
- Hammami, F.; Ghalla, H.; Nasr, S. Intermolecular Hydrogen Bonds in Urea-Water Complexes: DFT, NBO, and AIM Analysis. Comput. Theor. Chem. 2015, 1070, 40–47. [Google Scholar] [CrossRef]
- Rahmawati, S.; Radiman, C.L.; Martoprawiro, M.A. Density Functional Theory (DFT) and Natural Bond Orbital (NBO) Analysis of Intermolecular Hydrogen Bond Interaction in “Phosphorylated Nata de Coco-Water”. Indones. J. Chem. 2018, 18, 173–178. [Google Scholar] [CrossRef]
- Valiev, M.; Bylaska, E.J.; Govind, N.; Kowalski, K.; Straatsma, T.P.; Van Dam, H.J.J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T.L.; et al. NWChem: A Comprehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations. Comput. Phys. Commun. 2010, 181, 1477–1489. [Google Scholar] [CrossRef] [Green Version]
- Anugrah, D.S.B.; Darmalim, L.V.; Putro, P.A.; Nuratikah, L.D.; Sasongko, N.A.; Siahaan, P.; Yulandi, A. Computational Evaluation of Intermolecular Interaction in Poly(Styrene-Maleic Acid)-Water Complexes Using Density Functional Theory. Indones. J. Chem. 2021, 21, 1537. [Google Scholar] [CrossRef]
- Cisneros, G.A.; Wikfeldt, K.T.; Ojamäe, L.; Lu, J.; Xu, Y.; Torabifard, H.; Bartók, A.P.; Csányi, G.; Molinero, V.; Paesani, F. Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions. Chem. Rev. 2016, 116, 7501–7528. [Google Scholar] [CrossRef] [PubMed]
- Pontoh, R.; Rarisavitri, V.E.; Yang, C.C.; Putra, M.F.; Anugrah, D.S.B. Density Functional Theory Study of Intermolecular Interactions between Amylum and Cellulose. Indones. J. Chem. 2022, 22, 253. [Google Scholar] [CrossRef]
- Siahaan, P.; Sasongko, N.A.; Lusiana, R.A.; Prasasty, V.D.; Martoprawiro, M.A. The Validation of Molecular Interaction among Dimer Chitosan with Urea and Creatinine Using Density Functional Theory: In Application for Hemodyalisis Membrane. Int. J. Biol. Macromol. 2021, 168, 339–349. [Google Scholar] [CrossRef]
- Cortes, E.; Márquez, E.; Mora, J.R.; Puello, E.; Rangel, N.; De Moya, A.; Trilleras, J. Theoretical Study of the Adsorption Process of Antimalarial Drugs into Acrylamide-Base Hydrogel Model Using DFT Methods: The First Approach to the Rational Design of a Controlled Drug Delivery System. Processes 2019, 7, 396. [Google Scholar] [CrossRef] [Green Version]
- Uto, T.; Yui, T. DFT Optimization of Isolated Molecular Chain Sheet Models Constituting Native Cellulose Crystal Structures. ACS Omega 2018, 3, 8050–8058. [Google Scholar] [CrossRef]
- Aravamudhan, A.; Ramos, D.M.; Nada, A.A.; Kumbar, S.G. Natural Polymers. In Natural and Synthetic Biomedical Polymers; Kumbar, S.G., Laurencin, C.T., Deng, M., Eds.; Elsevier: Burlington, UK, 2014; pp. 67–89. ISBN 9780123969835. [Google Scholar]
- Kania, D.; Yunus, R.; Omar, R.; Abdul, S.; Mohamed, B.; Aulia, A. Journal of Petroleum Science and Engineering Lubricity Performance of Non-Ionic Surfactants in High-Solid Drilling Fluids : A Perspective from Quantum Chemical Calculations and Filtration Properties. J. Pet. Sci. Eng. 2021, 207, 109162. [Google Scholar] [CrossRef]
- Costa, M.P.M.; Prates, L.M.; Baptista, L.; Cruz, M.T.M.; Ferreira, I.L.M. Interaction of Polyelectrolyte Complex between Sodium Alginate and Chitosan Dimers with a Single Glyphosate Molecule: A DFT and NBO Study. Carbohydr. Polym. 2018, 198, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Koushesh Saba, M.; Amini, R.; Acevedo-Fani, A.; Soliva-Fortuny, R.; Martín-Belloso, O.; Sharaf Eddin, A.; Ibrahim, S.A.; Tahergorabi, R.; Dissertation, D.; Sun, Q.; et al. Edible Films/Coating with Tailored Properties for Active Packaging of Meat, Fish and Derived Products. Curr. Opin. Food Sci. 2019, 8, 86–92. [Google Scholar] [CrossRef]
- Namviriyachote, N.; Lipipun, V.; Akkhawattanangkul, Y.; Charoonrut, P.; Ritthidej, G.C. Development of Polyurethane Foam Dressing Containing Silver and Asiaticoside for Healing of Dermal Wound. Asian J. Pharm. Sci. 2019, 14, 63–77. [Google Scholar] [CrossRef]
- Baghbani, F.; Chegeni, M.; Moztarzadeh, F.; Mohandesi, J.A.; Mokhtari-Dizaji, M. Ultrasonic Nanotherapy of Breast Cancer Using Novel Ultrasound-Responsive Alginate-Shelled Perfluorohexane Nanodroplets: In Vitro and in Vivo Evaluation. Mater. Sci. Eng. C 2017, 77, 698–707. [Google Scholar] [CrossRef] [PubMed]
- French, A.D. Energy Maps for Glycosidic Linkage Conformations. Methods Mol. Biol. 2015, 1273, 333–358. [Google Scholar] [CrossRef]
- Brus, J.; Urbanova, M.; Czernek, J.; Pavelkova, M.; Kubova, K.; Vyslouzil, J.; Abbrent, S.; Konefal, R.; Horský, J.; Vetchy, D.; et al. Structure and Dynamics of Alginate Gels Cross-Linked by Polyvalent Ions Probed via Solid State NMR Spectroscopy. Biomacromolecules 2017, 18, 2478–2488. [Google Scholar] [CrossRef] [Green Version]
- Agulhon, P.; Markova, V.; Robitzer, M.; Quignard, F.; Mineva, T. Structure of Alginate Gels: Interaction of Diuronate Units with Divalent Cations from Density Functional Calculations. Biomacromolecules 2012, 13, 1899–1907. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Y.; Qin, Y.; Shen, P.; Peng, Q. Structures, Properties and Application of Alginic Acid: A Review. Int. J. Biol. Macromol. 2020, 162, 618–628. [Google Scholar] [CrossRef]
- García-Astrain, C.; Avérous, L. Synthesis and Evaluation of Functional Alginate Hydrogels Based on Click Chemistry for Drug Delivery Applications. Carbohydr. Polym. 2018, 190, 271–280. [Google Scholar] [CrossRef]
- Tamukong, P.K.; Khait, Y.G.; Hoffmann, M.R. Accurate Dissociation of Chemical Bonds Using DFT-in-DFT Embedding Theory with External Orbital Orthogonality. J. Phys. Chem. A 2017, 121, 256–264. [Google Scholar] [CrossRef]
- Rahmawati, S.; Radiman, C.L.; Martoprawiro, M.A. Ab Initio Study of Proton Transfer and Hydration on Phosphorylated Nata de Coco. Indones. J. Chem. 2017, 17, 523–530. [Google Scholar] [CrossRef]
- Chuang, J.-J.; Huang, Y.-Y.; Lo, S.-H.; Hsu, T.-F.; Huang, W.-Y.; Huang, S.-L.; Lin, Y.-S. Effects of PH on the Shape of Alginate Particles and Its Release Behavior. Int. J. Polym. Sci. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Szekalska, M.; Puciłowska, A.; Szymańska, E.; Ciosek, P.; Winnicka, K. Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. Int. J. Polym. Sci. 2016, 2016, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkataramanan, N.S.; Suvitha, A.; Kawazoe, Y. Intermolecular Interaction in Nucleobases and Dimethyl Sulfoxide/Water Molecules: A DFT, NBO, AIM and NCI Analysis. J. Mol. Graph. Model. 2017, 78, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Safia, H.; Ismahan, L.; Abdelkrim, G.; Mouna, C.; Leila, N.; Fatiha, M. Density Functional Theories Study of the Interactions between Host β-Cyclodextrin and Guest 8-Anilinonaphthalene-1-Sulfonate: Molecular Structure, HOMO, LUMO, NBO, QTAIM and NMR Analyses. J. Mol. Liq. 2019, 280, 218–229. [Google Scholar] [CrossRef]
- Awasthi, S.; Gaur, J.K.; Pandey, S.K.; Bobji, M.S.; Srivastava, C. High-Strength, Strongly Bonded Nanocomposite Hydrogels for Cartilage Repair. ACS Appl. Mater. Interfaces 2021, 13, 24505–24523. [Google Scholar] [CrossRef]
- Akman, F.; Issaoui, N.; Kazachenko, A.S. Intermolecular Hydrogen Bond Interactions in the Thiourea/Water Complexes (Thio-(H2O)n) (n = 1, …, 5): X-Ray, DFT, NBO, AIM, and RDG Analyses. J. Mol. Model. 2020, 26, 161. [Google Scholar] [CrossRef]
- Ehrlich, S.; Moellmann, J.; Grimme, S. Dispersion-Corrected Density Functional Theory for Aromatic Interactions in Complex Systems. Acc. Chem. Res. 2013, 46, 916–926. [Google Scholar] [CrossRef]
- Glendening, E.D.; Landis, C.R.; Weinhold, F. NBO 7.0: New Vistas in Localized and Delocalized Chemical Bonding Theory. J. Comput. Chem. 2019, 40, 2234–2241. [Google Scholar] [CrossRef]
- Grabowski, S.J. Hydrogen Bonding Strength-Measures Based on Geometric and Topological Parameters. J. Phys. Org. Chem. 2004, 17, 18–31. [Google Scholar] [CrossRef]
- Rozas, I.; Alkorta, I.; Elguero, J. Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors. J. Am. Chem. Soc. 2000, 122, 11154–11161. [Google Scholar] [CrossRef]
- Lane, J.R.; Contreras-García, J.; Piquemal, J.P.; Miller, B.J.; Kjaergaard, H.G. Are Bond Critical Points Really Critical for Hydrogen Bonding? J. Chem. Theory Comput. 2013, 9, 3263–3266. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef]
Complexes | χ | φ | ψ | Molecular Surface Volume (Å3) |
---|---|---|---|---|
Alg-(H2O)n | ||||
0 | 48.964 | −74.120 | −112.542 | 367.23 |
1 | 158.751 | 45.423 | −114.965 | 380.92 |
2 | 162.108 | 47.435 | −116.299 | 404.53 |
3 | 152.732 | 34.373 | −110.415 | 424.91 |
4 | 146.237 | 27.335 | −108.499 | 447 |
5 | 143.925 | 24.970 | −108.771 | 469 |
SA-(H2O)n | ||||
0 | 160.468 | 47.475 | −118.119 | 382.27 |
1 | 164.968 | 47.490 | −116.093 | 405.12 |
2 | 179.733 | 76.410 | −132.525 | 430.25 |
3 | 157.636 | 48.173 | −121.836 | 445.81 |
4 | 152.083 | 35.460 | −113.467 | 471.3 |
5 | 150.612 | 30.401 | −107.584 | 500.1 |
Complex | Distance (Å) | |||
---|---|---|---|---|
(O11-H43) | (O7-H39) | (C25=O13) | (C17-O5) | |
Alg-(H2O)n | ||||
0 | 0.9756 | 0.97005 | 1.21721 | 1.42388 |
1 | 0.97657 | 0.97968 | 1.22097 | 1.42452 |
2 | 0.97608 | 0.97118 | 1.2214 | 1.42434 |
3 | 0.976 | 1.00262 | 1.22167 | 1.4255 |
4 | 1.00498 | 1.00171 | 1.22795 | 1.42574 |
5 | 1.02644 | 1.00607 | 1.23184 | 1.42676 |
SA-(H2O)n | (O12…Na *) | (O11…Na *) | (C25-O13) | (C24-O10) |
0 | 2.1609 | 2.1965 | 1.2507 | 1.2555 |
1 | 2.1888 | 2.1820 | 1.2645 | 1.2503 |
2 | 2.3307 | 2.2307 | 1.2882 | 1.2566 |
3 | 2.2377 | 2.3434 | 1.2583 | 1.2541 |
4 | 2.2509 | 2.1683 | 1.2671 | 1.2477 |
5 | 2.2136 | 2.1948 | 1.2648 | 1.2596 |
Complexes | EHOMO (eV) | ELUMO (eV) | |
---|---|---|---|
Alg-(H2O)n | |||
0 | −7.19 | −0.35 | 6.84 |
1 | −6.96 | −0.52 | 6.43 |
2 | −6.98 | −0.56 | 6.42 |
3 | −6.99 | −0.59 | 6.39 |
4 | −6.96 | −0.67 | 6.29 |
5 | −6.95 | −0.61 | 6.33 |
SA-(H2O)n | |||
0 | −6.89 | −0.46 | 6.43 |
1 | −6.98 | −0.36 | 6.59 |
2 | −6.96 | −0.64 | 6.31 |
3 | −6.86 | −0.44 | 6.42 |
4 | −6.89 | −0.39 | 6.51 |
5 | −6.77 | −0.56 | 6.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anugrah, D.S.B.; Darmalim, L.V.; Polanen, M.R.I.; Putro, P.A.; Sasongko, N.A.; Siahaan, P.; Ramadhan, Z.R. Quantum Chemical Calculation for Intermolecular Interactions of Alginate Dimer-Water Molecules. Gels 2022, 8, 703. https://doi.org/10.3390/gels8110703
Anugrah DSB, Darmalim LV, Polanen MRI, Putro PA, Sasongko NA, Siahaan P, Ramadhan ZR. Quantum Chemical Calculation for Intermolecular Interactions of Alginate Dimer-Water Molecules. Gels. 2022; 8(11):703. https://doi.org/10.3390/gels8110703
Chicago/Turabian StyleAnugrah, Daru Seto Bagus, Laura Virdy Darmalim, Muhammad Rifky Irwanto Polanen, Permono Adi Putro, Nurwarrohman Andre Sasongko, Parsaoran Siahaan, and Zeno Rizqi Ramadhan. 2022. "Quantum Chemical Calculation for Intermolecular Interactions of Alginate Dimer-Water Molecules" Gels 8, no. 11: 703. https://doi.org/10.3390/gels8110703
APA StyleAnugrah, D. S. B., Darmalim, L. V., Polanen, M. R. I., Putro, P. A., Sasongko, N. A., Siahaan, P., & Ramadhan, Z. R. (2022). Quantum Chemical Calculation for Intermolecular Interactions of Alginate Dimer-Water Molecules. Gels, 8(11), 703. https://doi.org/10.3390/gels8110703