Cobalt- and Copper-Based Chemiresistors for Low Concentration Methane Detection, a Comparison Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sensor Characterization
2.2. Gas Sensing Experiments
Cross-Sensitivity Tests (Relative Humidity and CO2 Measurements)
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. [Google Scholar]
- Available online: http://medbox.iiab.me/modules/en-cdc/www.cdc.gov/niosh/ipcsneng/neng0291.html (accessed on 1 October 2022).
- Brattain, W.H.; Bardeen, J. Surface Properties of Germanium. Bell Syst. Tech. J. 1953, 3, 1–41. [Google Scholar] [CrossRef]
- Taguchi, N. Gas Detecting Device. U.S. Patent 3,695,848 A, 3 October 1972. [Google Scholar]
- Taya, S. Slab Waveguide with Air Core Layer and Anisotropic Left-Handed Material Claddings as a Sensor. Opto-Electron. Rev. 2014, 22, 252–257. [Google Scholar] [CrossRef]
- Sayago, I.; Santos, J.P.; Sánchez-Vicente, C. The Effect of Rare Earths on the Response of Photo UV-Activate ZnO Gas Sensors. Sensors 2022, 22, 8150. [Google Scholar] [CrossRef]
- Rydosz, A. The Use of Copper Oxide Thin Films in Gas-Sensing Applications. Coatings 2018, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Shaalan, N.M.; Rashad, M.; Abdel-Rahim, M.A. CuO Nanoparticles Synthesized by Microwave-Assisted Method for Methane Sensing. Opt. Quantum Electron. 2016, 48, 531. [Google Scholar] [CrossRef]
- Jayatissa, A.H.; Samarasekara, P.; Kun, G. Methane Gas Sensor Application of Cuprous Oxide Synthesized by Thermal Oxidation. Phys. Status Solidi 2009, 206, 332–337. [Google Scholar] [CrossRef]
- Ahmadpour, A.; Mehrabadi, Z.S.; Esfandyari, J.R.; Koolivand-Salooki, M. Modeling of Cu Doped Cobalt Oxide Nanocrystal Gas Sensor for Methane Detection: ANFIS Approach. J. Chem. Eng. Process Technol. 2012, 3, 1–6. [Google Scholar]
- Bratan, V.; Vasile, A.; Chesler, P.; Hornoiu, C. Insights into the Redox and Structural Properties of CoOx and MnOx: Fundamental Factors Affecting the Catalytic Performance in the Oxidation Process of VOCs. Catalysts 2022, 12, 1134. [Google Scholar] [CrossRef]
- Steinhauer, S. Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors 2021, 9, 51. [Google Scholar] [CrossRef]
- Bratan, V.; Chester, P.; Hornoiu, C.; Scurtu, M.; Postole, G.; Pietrzyk, P.; Gervasini, A.; Auroux, A.; Ionescu, N.I. In Situ Electrical Conductivity Study of Pt-Impregnated VOx/Gamma-Al2O3 Catalysts in Propene Deep Oxidation. J. Mater. Sci. 2020, 55, 10466–10481. [Google Scholar] [CrossRef]
- Bratan, V.; Munteanu, C.; Chesler, P.; Negoescu, D.; Ionescu, N.I. electrical characterization and the catalytic properties of SnO2/TiO2 catalysts and their Pd-supported equivalents. Rev. Roum. Chim. 2014, 59, 335–341. [Google Scholar]
- Brătan, V.; Chesler, P.; Vasile, A.; Todan, L.; Zaharescu, M.; Căldăraru, M. Surface Properties and Catalytic Oxidation on V2O5-CeO2 Catalysts. Rev. Roum. Chim. 2011, 56, 1055–1065. [Google Scholar]
- Firtat, B.; Moldovan, C.; Brasoveanu, C.; Muscalu, G.; Gartner, M.; Zaharescu, M.; Chesler, P.; Hornoiu, C.; Mihaiu, S.; Vladut, C.; et al. Miniaturised MOX Based Sensors for Pollutant and Explosive Gases Detection. Sens. Actuators B Chem. 2017, 249, 647–655. [Google Scholar] [CrossRef]
- Chesler, P.; Hornoiu, C.; Bratan, V.; Munteanu, C.; Gartner, M.; Ionescu, N.I. Carbon monoxide sensing properties of TiO2. Rev. Roum. Chim. 2015, 60, 227–232. [Google Scholar]
- Chesler, P.; Hornoiu, C.; Bratan, V.; Munteanu, C.; Postole, G.; Ionescu, N.I.; Juzsakova, T.; Redey, A.; Gartner, M. CO Sensing Properties of SnO2–CeO2 Mixed Oxides. React. Kinet. Mech. Catal. 2016, 117, 551–563. [Google Scholar] [CrossRef]
- Chelu, M.; Chesler, P.; Anastasescu, M.; Hornoiu, C.; Mitrea, D.; Atkinson, I.; Brasoveanu, C.; Moldovan, C.; Craciun, G.; Gheorghe, M.; et al. ZnO/NiO Heterostructure-Based Microsensors Used in Formaldehyde Detection at Room Temperature: Influence of the Sensor Operating Voltage. J. Mater. Sci. Mater. Electron. 2022, 33, 19998–20011. [Google Scholar] [CrossRef]
- Chesler, P.; Hornoiu, C.; Mihaiu, S.; Munteanu, C.; Gartner, M. Tin–Zinc Oxide Composite Ceramics for Selective CO Sensing. Ceram. Int. 2016, 42, 16677–16684. [Google Scholar] [CrossRef]
- Chesler, P.; Hornoiu, C.; Mihaiu, S.; Vladut, C.; Moreno, J.M.C.; Anastasescu, M.; Moldovan, C.; Firtat, B.; Brasoveanu, C.; Muscalu, G.; et al. Nanostructured SnO2-ZnO Composite Gas Sensors for Selective Detection of Carbon Monoxide. Beilstein J. Nanotechnol. 2016, 7, 2045–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duta, M.; Predoana, L.; Calderon-Moreno, J.M.; Preda, S.; Anastasescu, M.; Marin, A.; Dascalu, I.; Chesler, P.; Hornoiu, C.; Zaharescu, M.; et al. Nb-Doped TiO2 Sol–Gel Films for CO Sensing Applications. Mater. Sci. Semicond. Process. 2016, 42, 397–404. [Google Scholar] [CrossRef]
Sensor Abbreviation | Sensitive Film | Transducer (IDE/Wafer) |
---|---|---|
S3 | CuO | Au/Al2O3 |
S4 | CuO | Pt/Al2O3 |
S5 | CoO | Pt/Al2O3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chesler, P.; Hornoiu, C.; Anastasescu, M.; Calderon-Moreno, J.M.; Gheorghe, M.; Gartner, M. Cobalt- and Copper-Based Chemiresistors for Low Concentration Methane Detection, a Comparison Study. Gels 2022, 8, 721. https://doi.org/10.3390/gels8110721
Chesler P, Hornoiu C, Anastasescu M, Calderon-Moreno JM, Gheorghe M, Gartner M. Cobalt- and Copper-Based Chemiresistors for Low Concentration Methane Detection, a Comparison Study. Gels. 2022; 8(11):721. https://doi.org/10.3390/gels8110721
Chicago/Turabian StyleChesler, Paul, Cristian Hornoiu, Mihai Anastasescu, Jose Maria Calderon-Moreno, Marin Gheorghe, and Mariuca Gartner. 2022. "Cobalt- and Copper-Based Chemiresistors for Low Concentration Methane Detection, a Comparison Study" Gels 8, no. 11: 721. https://doi.org/10.3390/gels8110721
APA StyleChesler, P., Hornoiu, C., Anastasescu, M., Calderon-Moreno, J. M., Gheorghe, M., & Gartner, M. (2022). Cobalt- and Copper-Based Chemiresistors for Low Concentration Methane Detection, a Comparison Study. Gels, 8(11), 721. https://doi.org/10.3390/gels8110721