Preparation of NLCs-Based Topical Erythromycin Gel: In Vitro Characterization and Antibacterial Assessment
Abstract
:1. Introduction
2. Materials
3. Experimental
3.1. Screening of Excipients
3.2. Selection Solid and Liquid Lipid Ratio by Miscibility
3.3. Optimization
3.4. Formulation of Erythromycin Nanostructured Lipid Carrier (EM-NLCs)
3.5. Characterization
3.5.1. NLCs Evaluation
3.5.2. Entrapment Efficiency (EE)
3.5.3. Development of In Situ Gel of EM-NLCs (EM-NLCs-IG)
3.5.4. Gelling Strength and Viscosity
3.5.5. Clarity, Optical Transmittance and pH Determination
3.5.6. In Vitro Drug Release
3.5.7. Mucoadhesive Study
3.5.8. Ex Vivo Goat Corneal Permeation
3.5.9. Histopathological Examination
3.5.10. Corneal Hydration
3.5.11. HET-CAM Irritation Study
3.5.12. Sterility and Isotonicity Evaluation
3.5.13. Antibacterial Activity
4. Result and Discussion
4.1. Screening of Solid and Liquid Lipid
4.2. Selection Solid and Liquid Lipid Ratio by Miscibility
4.3. Optimization
4.4. Effect of Variables on Size (Y1)
4.5. Effect of Variables on Encapsulation Efficiency
4.6. Point Prediction
4.7. Development of EM-NLCs In Situ Gel
4.8. Characterization of EM-NLCs In Situ Gel
4.8.1. Gelling Strength
4.8.2. Viscosity Measurement
4.8.3. In Vitro Drug Release Study
4.8.4. Mucoadhesive Study
4.8.5. Ex Vivo Corneal Permeation Study
4.8.6. Histopathological Examination
4.8.7. Corneal Hydration
4.8.8. HET CAM Irritation Study
4.8.9. Sterility and Isotonicity Study
4.8.10. Antimicrobial Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gholizadeh, S.; Wang, Z.; Chen, X.; Dana, R.; Annabi, N. Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discov. Today 2021, 26, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.S.; Ahad, A.; Aslam, M.; Imam, S.S.; Aqil, M.; Ali, A. Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int. J. Biol. Macromol. 2016, 85, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Das, M.; Jain, S. In situ gel systems as ’smart’ carriers for sustained ocular drug delivery. Expert Opin. Drug Deliv. 2012, 9, 383–402. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Shetty, K.H.; Desai, D.T.; Shah, D.O.; Willcox, M.D.P. Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. Int. J. Pharm. 2021, 608, 121105. [Google Scholar] [CrossRef] [PubMed]
- Lakhani, P.; Patil, A.; Wu, K.W.; Sweeney, C.; Tripathi, S.; Avula, B.; Taskar, P.; Khan, S.; Majumdar, S. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. Int. J. Pharm. 2019, 572, 118771. [Google Scholar] [CrossRef]
- Ferreira, K.S.A.; Santos, B.M.A.D.; Lucena, N.P.; Ferraz, M.S.; Carvalho, R.S.F.; Duarte Júnior, A.P.; Magalhães, N.S.S.; Lira, R.P.C. Ocular delivery of moxifloxacin-loaded liposomes. Arq. Bras. Oftalmol. 2018, 81, 510–513. [Google Scholar] [CrossRef]
- Ameeduzzafar; Alruwaili, N.K.; Imam, S.S.; Alotaibi, N.H.; Alhakamy, N.A.; Alharbi, K.S.; Alshehri, S.; Afzal, M.; Alenezi, S.K.; Bukhari, S.N.A. Formulation of Chitosan Polymeric Vesicles of Ciprofloxacin for Ocular Delivery: Box-Behnken Optimization, In Vitro Characterization, HET-CAM Irritation, and Antimicrobial Assessment. AAPS PharmSciTech 2020, 21, 167. [Google Scholar] [CrossRef]
- Taghe, S.; Mirzaeei, S.; Alany, R.G.; Nokhodchi, A. Polymeric Inserts Containing Eudragit® L100 Nanoparticle for Improved Ocular Delivery of Azithromycin. Biomedicines 2020, 8, 466. [Google Scholar] [CrossRef]
- Shelley, H.; Rodriguez-Galarza, R.M.; Duran, S.H.; Abarca, E.M.; Babu, R.J. In Situ Gel Formulation for Enhanced Ocular Delivery of Nepafenac. J. Pharm. Sci. 2018, 107, 3089–3097. [Google Scholar] [CrossRef]
- Janagam, D.; Wu, L.; Lowe, T. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev. 2017, 122, 31–64. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ye, T.; Chen, F.; Sun, X.; Kong, J.; Yang, X.; Pan, W.; Li, S. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology. Int. J. Pharm. 2013, 454, 354–366. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.; Pan, H.; He, F.; Liu, Z.; Wu, Q.; Bai, C.; Yu, S.; Yang, X. Potential advantages of a novel chitosan-N-acetylcysteine surface modified nanostructured lipid carrier on the performance of ophthalmic delivery of curcumin. Sci. Rep. 2016, 6, 28796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Salamouni, N.S.; Farid, R.M.; El-Kamel, A.H.; El-Gamal, S.S. Nanostructured lipid carriers for intraocular brimonidine localisation: Development, in-vitro and in-vivo evaluation. J. Microencapsul. 2018, 35, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elhakeem, E.; El-Nabarawi, M.; Shamma, R. Lipid-based nano-formulation platform for eplerenone oral delivery as a potential treatment of chronic central serous chorioretinopathy: In-vitro optimization and ex-vivo assessment. Drug Deliv. 2021, 28, 642–654. [Google Scholar] [CrossRef]
- Tavakoli, N.; Taymouri, S.; Saeidi, A.; Akbari, V. Thermosensitive hydrogel containing sertaconazole loaded nanostructured lipid carriers for potential treatment of fungal keratitis. Pharm. Dev. Technol. 2019, 24, 891–901. [Google Scholar] [CrossRef]
- Youssef, A.; Dudhipala, N.; Majumdar, S. Ciprofloxacin Loaded Nanostructured Lipid Carriers Incorporated into In-Situ Gels to Improve Management of Bacterial Endophthalmitis. Pharmaceutics 2020, 12, 572. [Google Scholar] [CrossRef]
- Gade, S.; Patel, K.K.; Gupta, C.; Anjum, M.M.; Deepika, D.; Agrawal, A.K.; Singh, S. An Ex Vivo Evaluation of Moxifloxacin Nanostructured Lipid Carrier Enriched In Situ Gel for Transcorneal Permeation on Goat Cornea. J. Pharm. Sci. 2019, 108, 2905–2916. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.R.; de Araújo, A.C.J.; Barbosa, C.R.; Muniz, D.F.; Tintino, S.R.; Ribeiro-Filho, J.; Siqueira Júnior, J.P.; Filho, J.M.B.; de Sousa, G.R.; Coutinho, H.D.M. Inhibition of Efflux Pumps by Monoterpene (α-pinene) and Impact on Staphylococcus aureus Resistance to Tetracycline and Erythromycin. Curr. Drug Metab. 2021, 22, 123–126. [Google Scholar] [CrossRef]
- Olajuyigbe, O.O.; Animashaun, T. Synergistic activities of amoxicillin and erythromycin against bacteria of medical importance. Pharmacologia 2012, 3, 450–455. [Google Scholar] [CrossRef]
- Gupta, S.; Vyas, S.P. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci. Pharm. 2010, 78, 959–976. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, Y.; Li, X.; Kebebe, D.; Zhang, B.; Ren, J.; Lu, J.; Li, J.; Du, S.; Liu, Z. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J. Pharm. Sci. 2019, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sheshala, R.; Kok, Y.Y.; Ng, J.M.; Thakur, R.R.; Dua, K. In situ gelling ophthalmic drug delivery system: An overview and its applications. Recent Pat. Drug Deliv. 2015, 9, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Chen, X.-G.; Xing, K.; Park, H.-J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microb. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Modi, D.; Mohammad Warsi, M.H.; Garg, V.; Bhatia, M.; Kesharwani, P.; Jain, G.K. Formulation development, optimization, and in vitro assessment of thermoresponsive ophthalmic pluronic F127-chitosan in situ tacrolimus gel. J. Biomater. Sci. Polym. Ed. 2021, 32, 1678–1702. [Google Scholar] [CrossRef]
- Cirri, M.; Maestrini, L.; Maestrelli, F.; Mennini, N.; Mura, P.; Ghelardini, C.; Di Cesare Mannelli, L. Design, characterization and in vivo evaluation of nanostructured lipid carriers (NLC) as a new drug delivery system for hydrochlorothiazide oral administration in pediatric therapy. Drug Deliv. 2018, 25, 1910–1921. [Google Scholar] [CrossRef]
- Hao, J.; Wang, F.; Wang, X.; Zhang, D.; Bi, Y.; Gao, Y.; Zhao, X.; Zhang, Q. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. Eur. J. Pharm. Sci. 2012, 47, 497–505. [Google Scholar] [CrossRef]
- Kollipara, S.; Bende, G.; Movva, S.; Saha, R. Application of rotatable central composite design in the preparation and optimization of poly(lactic-co-glycolic acid) nanoparticles for controlled delivery of paclitaxel. Drug Dev. Ind. Pharm. 2010, 36, 1377–1387. [Google Scholar] [CrossRef]
- Ye, Q.; Li, J.; Li, T.; Ruan, J.; Wang, H.; Wang, F.; Zhang, X. Development and evaluation of puerarin-loaded controlled release nanostructured lipid carries by central composite design. Drug Dev. Ind. Pharm. 2021, 47, 113–125. [Google Scholar] [CrossRef]
- Velmurugan, R.; Selvamuthukumar, S. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. Appl. Nanosci. 2016, 6, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Makoni, P.A.; Khamanga, S.M.; Walker, R.B. Muco-adhesive clarithromycin-loaded nanostructured lipid carriers for ocular delivery: Formulation, characterization, cytotoxicity and stability. J. Drug Deliv. Sci. Technol. 2021, 61, 102171. [Google Scholar] [CrossRef]
- Tavakoli, M.; Mahboobian, M.M.; Nouri, F.; Mohammadi, M. Studying the ophthalmic toxicity potential of developed ketoconazole loaded nanoemulsion in situ gel formulation for ophthalmic administration. Toxicol. Mech. Methods 2021, 31, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, S.; Pandit, J.; Mondal, R.S.; Mishra, A.K.; Chuttani, K.; Aqil, M.; Ali, A.; Sultana, Y. In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydr. Polym. 2014, 102, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Upadhayay, P.; Kumar, M.; Pathak, K. Norfloxacin Loaded pH Triggered Nanoparticulate in-situ Gel for Extraocular Bacterial Infections: Optimization, Ocular Irritancy and Corneal Toxicity. Iran. J. Pharm. Res. 2016, 15, 3–22. [Google Scholar] [PubMed]
- Wardrop, J.; Ficker, D.; Franklin, S.; Gorski, R.J. Determination of erythromycin and related substances in enteric-coated tablet formulations by reversed-phase liquid chromatography. J. Pharm. Sci. 2000, 89, 1097–1105. [Google Scholar] [CrossRef]
- Nagarwal, R.C.; Kumar, R.; Pandit, J.K. Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: In vitro characterization and in vivo study in rabbit eye. Eur. J. Pharm. Sci. 2012, 47, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Bagley, D.M.; Waters, D.; Kong, B.M. Development of a 10-day chorioallantoic membrane vascular assay as an alternative to the Draize rabbit eye irritation test. Food Chem. Toxicol. 1994, 32, 1155–1160. [Google Scholar] [CrossRef]
- ICCVAM-Recommended Test Method Protocol: Hen’s Egg Test—Chorioallantoic Membrane (HET-CAM) Test Method. ICCVAM Test Method Eval. Rep. 2010, 13, B30–B38.
- Hiremath, S.S.P.; Dasankoppa, F.S.; Nadaf, A.; Jamakandi, V.G.; Mulla, J.S.; Sholapur, H.N.; Aezaz, A. Formulation and Evaluation of a Novel In Situ Gum Based Ophthalmic Drug Delivery System of Linezolid. Sci. Pharm. 2008, 76, 515–532. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Wu, F.; Chen, M.; Jin, J.; Wang, R.; Yuan, Y. Formulation design, characterization, and in vitro and in vivo evaluation of nanostructured lipid carriers containing a bile salt for oral delivery of gypenosides. Int. J. Nanomed. 2019, 14, 2267–2280. [Google Scholar] [CrossRef] [Green Version]
- Behbahani, E.S.; Ghaedi, M.; Abbaspour, M.; Rostamizadeh, K. Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques. Ultrason. Sonochem. 2017, 38, 271–280. [Google Scholar] [CrossRef]
- Tinu, T.S.; Thomas, L.; Kumar, A. Polymers used in ophthalmic in situ gelling system. Int. J. Pharm. Sci. Rev. Res. 2013, 30, 176–183. [Google Scholar]
- Hamman, J.H. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar. Drugs. 2010, 8, 1305–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, S.; Furtado, S.; Bharath, S.; Basavaraj, B.V.; Deveswaran, R.; Madhavan, V. Sustained ophthalmic delivery of ofloxacin from an ion-activated in situ gelling system. Pak. J. Pharm. Sci. 2009, 22, 175–179. [Google Scholar] [PubMed]
- Shukr, M.H.; Ismail, S.; El-Hossary, G.G.; El-Shazly, A.H. Design and evaluation of mucoadhesive in situ liposomal gel for sustained ocular delivery of travoprost using two steps factorial design. J. Drug Deliv. Sci. Technol. 2021, 61, 102333. [Google Scholar] [CrossRef]
- Fahmy, U.A.; Ahmed, O.A.A.; Badr-Eldin, S.M.; Aldawsari, H.M.; Okbazghi, S.Z.; Awan, Z.A.; Bakhrebah, M.A.; Alomary, M.N.; Abdulaal, W.H.; Medina, C.; et al. Optimized Nanostructured Lipid Carriers Integrated into In Situ Nasal Gel for Enhancing Brain Delivery of Flibanserin. Int. J. Nanomed. 2020, 15, 5253–5264. [Google Scholar] [CrossRef]
- Yu, S.; Li, Q.; Li, Y.; Wang, H.; Liu, D.; Yang, X.; Pan, W. A novel hydrogel with dual temperature and pH responsiveness based on a nanostructured lipid carrier as an ophthalmic delivery system: Enhanced trans-corneal permeability and bioavailability of nepafenac. New J. Chem. 2017, 41, 3920–3929. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Fouda, N.H.; Abdelrehim, R.T.; Hegazy, D.A.; Habib, B.A. Sustained ocular delivery of Dorzolamide-HCl via proniosomal gel formulation: In-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits. Drug Deliv. 2018, 25, 1340–1349. [Google Scholar] [CrossRef] [Green Version]
Independent Factors | Units | Levels | Star Points | |||
---|---|---|---|---|---|---|
Low (−1) | Medium (0) | High (+1) | −α (−1.68) | +α (+1.68) | ||
Lipid (A) | (%) | 2 | 4 | 6 | 0.64 | 7.36 |
Surfactant (B) | (%) | 2 | 3.5 | 5 | 0.98 | 6.02 |
Sonication time (C) | (min) | 2.5 | 5 | 7.5 | 0.8 | 9.2 |
Dependent factors | Goals | |||||
Particle size | (nm) | Minimum | ||||
Entrapment efficiency | (%) | Maximum |
Formulation | Lipid (%) | Surfactant (%) | Sonication Time (min) | Particle Size (nm) | Entrapment Efficiency (%) |
---|---|---|---|---|---|
A | B | C | Y1 | Y2 | |
EM-NLCs1 | 2 | 2 | 2.5 | 239.2 ± 5.2 | 73.5 ± 1.2 |
EM-NLCs2 | 6 | 2 | 2.5 | 350.6 ± 4.2 | 69.4 ± 1.3 |
EM-NLCs3 | 2 | 5 | 2.5 | 219.5 ± 6.2 | 71.5 ± 1.6 |
EM-NLCs4 | 6 | 5 | 2.5 | 261.5 ± 4.9 | 87.5 ± 2.2 |
EM-NLCs5 | 2 | 2 | 7.5 | 199.7 ± 3.7 | 78.5 ± 1.5 |
EM-NLCs6 | 6 | 2 | 7.5 | 319.4 ± 7.6 | 76.5 ± 1.9 |
EM-NLCs7 | 2 | 5 | 7.5 | 122.6 ± 6.1 | 70.5 ± 1.4 |
EM-NLCs8 | 6 | 5 | 7.5 | 201.3 ± 7.2 | 84.5 ± 1.6 |
EM-NLCs9 | 0.64 | 3.5 | 5 | 140.6 ± 3.4 | 70.5 ± 1.7 |
EM-NLCs10 | 7.36 | 3.5 | 5 | 285.3 ± 6.2 | 84.5 ± 1.9 |
EM-NLCs11 | 4 | 0.98 | 5 | 346.9 ± 7.9 | 73.5 ± 1.4 |
EM-NLCs12 | 4 | 6 | 5 | 177.3 ± 5.2 | 80.2 ± 1.6 |
EM-NLCs13 | 4 | 3.5 | 0.8 | 287.4 ± 6.3 | 76.5 ± 1.8 |
EM-NLCs14 | 4 | 3.5 | 9.2 | 177.5 ± 5.3 | 78.5 ± 1.4 |
* EM-NLCs15 | 4 | 3.5 | 5 | 195.5 ± 3.6 | 82.6 ± 1.2 |
* EM-NLC16 | 4 | 3.5 | 5 | 195.5 ± 3.6 | 82.6 ± 1.2 |
* EM-NLC17 | 4 | 3.5 | 5 | 195.5 ± 3.6 | 82.6 ± 1.2 |
* EM-NLC18 | 4 | 3.5 | 5 | 195.5 ± 3.6 | 82.6 ± 1.2 |
* EM-NLC19 | 4 | 3.5 | 5 | 195.5 ± 3.6 | 82.6 ± 1.2 |
* EM-NLC20 | 4 | 3.5 | 5 | 195.5 ± 3.6 | 82.6 ± 1.2 |
Model | Y1 (Particle Size, nm) | ||||
---|---|---|---|---|---|
SD | R² | Adjusted R² | Predicted R² | p-Value | |
Linear | 31.8 | 7909 | 0.7517 | 0.6648 | 0.0073 |
2FI | 29.8 | 8496 | 0.7802 | 0.5737 | 0.0198 |
Quadratic | 11.6 | 0.9827 | 0.9671 | 0.8997 | 0.0001 |
Y2 (Entrapment efficiency, %) | |||||
Linear | 4.29 | 0.4887 | 0.3929 | 0.1700 | <0.0001 |
2FI | 2.32 | 0.7512 | 0.6364 | 0.2857 | <0.0001 |
Quadratic | 0.71 | 0.9913 | 0.9836 | 0.9252 | <0.0011 |
Formulations | Lipid: Surfactant: Sonication Time | Actual Value | Predicted Value | ||
---|---|---|---|---|---|
Y1 (nm) | Y2 (%) | Y1 (nm) | Y2 (%) | ||
EM-NLC-opt | 3.5:4:5.5 | 169.6 ± 4.8 | 81.7 ± 1.4 | 167.4 | 83.8 |
Code | Carbopol (%) | Chitosan (%) | pH | Optical Transmittance (%) | Drug Content (%) | Gelling Strength | Viscosity (cP) | |
---|---|---|---|---|---|---|---|---|
Solution | With STF | |||||||
EM-NLCs-opt2-IG1 | 0.1 | 0.4 | 6.54 ± 0.4 | 94.8 ± 1.1 | 98.7 ± 3.1 | − | 6.2 ± 1.1 | 10.5 ± 2.1 |
EM-NLCs-opt2-IG2 | 0.2 | 0.4 | 6.43 ± 0.6 | 95.8 ± 0.8 | 98.8 ± 2.1 | + | 38.5 ± 3.7 | 141.3 ± 2.4 |
EM-NLCs-opt2-IG3 | 0.3 | 0.4 | 6.24 ± 0.2 | 95.7 ± 1.1 | 98.2 ± 2.7 | ++ | 50.4 ± 1.7 | 176.4 ± 2.5 |
EM-NLCs-opt2-IG4 | 0.4 | 0.4 | 6.16 ± 0.2 | 98.5 ± 0.4 | 99.6 ± 3.7 | +++ | 87.4 ± 2.3 | 216.3 ± 1.3 |
EM-NLCs-opt2-IG5 | 0.5 | 0.4 | 6.02 ± 0.7 | 96.6 ± 0.9 | 99.6 ± 1.4 | ++++ | 98.5 ± 2.1 | 254.8 ± 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafar, A.; Imam, S.S.; Yasir, M.; Alruwaili, N.K.; Alsaidan, O.A.; Warsi, M.H.; Mir Najib Ullah, S.N.; Alshehri, S.; Ghoneim, M.M. Preparation of NLCs-Based Topical Erythromycin Gel: In Vitro Characterization and Antibacterial Assessment. Gels 2022, 8, 116. https://doi.org/10.3390/gels8020116
Zafar A, Imam SS, Yasir M, Alruwaili NK, Alsaidan OA, Warsi MH, Mir Najib Ullah SN, Alshehri S, Ghoneim MM. Preparation of NLCs-Based Topical Erythromycin Gel: In Vitro Characterization and Antibacterial Assessment. Gels. 2022; 8(2):116. https://doi.org/10.3390/gels8020116
Chicago/Turabian StyleZafar, Ameeduzzafar, Syed Sarim Imam, Mohd Yasir, Nabil K. Alruwaili, Omar Awad Alsaidan, Musarrat Husain Warsi, Shehla Nasar Mir Najib Ullah, Sultan Alshehri, and Mohammed M. Ghoneim. 2022. "Preparation of NLCs-Based Topical Erythromycin Gel: In Vitro Characterization and Antibacterial Assessment" Gels 8, no. 2: 116. https://doi.org/10.3390/gels8020116
APA StyleZafar, A., Imam, S. S., Yasir, M., Alruwaili, N. K., Alsaidan, O. A., Warsi, M. H., Mir Najib Ullah, S. N., Alshehri, S., & Ghoneim, M. M. (2022). Preparation of NLCs-Based Topical Erythromycin Gel: In Vitro Characterization and Antibacterial Assessment. Gels, 8(2), 116. https://doi.org/10.3390/gels8020116