Design and Synthesis of Hybrid Thermo-Responsive Hydrogels Based on Poly(2-oxazoline) and Gelatin Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Polymer Precursors
2.1.1. Synthesis of Functional Poly(2-oxazoline) Copolymers with Reactive Side Chains
2.1.2. Side-Chain Modification via Direct Amidation
2.1.3. Influence of the Side-Chain Modification on the Thermo-Responsive Behavior
2.1.4. Development of Thiolated Gelatin (Gel-SH)
2.2. Investigation of the Crosslinking Kinetics and Mechanical Properties of PAOx:gel-SH Hybrid Hydrogels via Photo-Rheology
2.3. Determination of the Mechanical and Swelling Properties of PAOx-Gelatin Hybrid Hydrogel Films
2.3.1. Mechanical Properties of PAOx-Gelatin Hybrid Hydrogel Films
2.3.2. Swelling Behavior and Gel Fraction of PAOx-Gelatin Hybrid Hydrogel Films
2.4. Thermo-Responsive Properties of PAOx:gel-SH Hybrid Hydrogels
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Equipment
4.3. Methods
4.3.1. Copolymerization of C3MestOx and EtOx
4.3.2. Post-Polymerization Modification of P(EtOx270–stat–C3MestOx30) by Direct Amidation with Allylamine
4.3.3. Post-Polymerization Modification of P(EtOx270–stat–C3MestOx30) by Direct Amidation with Aminomethyl Norbornene
4.3.4. Synthesis of Thiolated Gelatin B (Gel-SH)
4.3.5. Development of Hybrid Hydrogels Using Functional Gelatin and Functional PAOx via Film Casting
4.4. Characterization
4.4.1. Determination of the Crosslinking Kinetics via Photo-Rheology
4.4.2. Determination of the Gel Fraction and Swelling Capacity of the Hydrogels
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anseth, K.S.; Metters, A.T.; Bryant, S.J.; Martens, P.J.; Elisseeff, J.H.; Bowman, C. In Situ forming degradable networks and their application in tissue engineering and drug delivery. J. Control Release 2002, 78, 199–209. [Google Scholar] [CrossRef]
- Nilasaroya, A.; Poole-Warren, L.A.; Whitelock, J.M.; Martens, P.J. Structural and functional characterisation of poly(vinyl alcohol) and heparin hydrogels. Biomaterials 2008, 29, 4658–4664. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, R.; Krishnan, U.M.; Sethuraman, S. Multidimensional nanofibrous scaffolds of poly(lactide-co-caprolactone) and poly(ethyl oxazoline) with improved features for cardiac tissue engineering. Nanomedicine 2015, 10, 3451–3467. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yu, Y.; Wu, X.; Wang, G.; Ren, J.; Zhao, Y. Bioinspired Multifunctional Hybrid Hydrogel Promotes Wound Healing. Adv. Funct. Mater. 2018, 28, 1801386. [Google Scholar] [CrossRef]
- Zhu, J.; Li, F.; Wang, X.; Yu, J.; Wu, D. Hyaluronic Acid and Polyethylene Glycol Hybrid Hydrogel Encapsulating Nanogel with Hemostasis and Sustainable Antibacterial Property for Wound Healing. ACS Appl. Mater. Interfaces 2018, 10, 13304–13316. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Luo, C.; Luo, F. Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength. Eur. Polym. J. 2020, 124, 109465. [Google Scholar] [CrossRef]
- Van Hoorick, J.; Tytgat, L.; Dobos, A.; Ottevaere, H.; Van Erps, J.; Thienpont, H.; Ovsianikov, A.; Dubruel, P.; Van Vlierberghe, S. (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater. 2019, 97, 46–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenk, V.; Rossegger, E.; Ebner, C.; Bangerl, F.; Reichmann, K.; Hoffmann, B.; Hopfner, M.; Wiesbrock, F. RGD-Functionalization of Poly(2-oxazoline)-Based Networks for Enhanced Adhesion to Cancer Cells. Polymers 2014, 6, 264–279. [Google Scholar] [CrossRef] [Green Version]
- Van Der Heide, D.; Verbraeken, B.; Hoogenboom, R.; Dargaville, T.; Hickey, D. Porous poly(2-oxazoline) scaffolds for developing 3D primary human tissue culture. Mol. Biophys. Biochem. 2017, 1, 1–5. [Google Scholar] [CrossRef]
- Kabanov, A.V.; Jordan, R.; Luxenhofer, R. Polymeric Delivery Systems for Active Agents. U.S. Patent 20110165258A1, 22 December 2011. [Google Scholar]
- Jaunarajs, K.L.E.; Standaert, D.G.; Viegas, T.X.; Bentley, M.D.; Fang, Z.F.; Dizman, B.; Yoon, K.; Bs, R.W.; Ravenscroft, P.; Johnston, T.H.; et al. Rotigotine polyoxazoline conjugate SER-214 provides robust and sustained antiparkinsonian benefit. Mov. Disord. 2013, 28, 1675–1682. [Google Scholar] [CrossRef]
- Segiet, D.; Jerusalem, R.; Katzenberg, F.; Tiller, J.C. Investigation of the swelling behavior of hydrogels derived from high-molecular-weight poly(2-ethyl-2-oxazoline). J. Appl. Polym. Sci. 2020, 58, 747–755. [Google Scholar] [CrossRef]
- Legros, C.; Wirotius, A.-L.; De Pauw-Gillet, M.-C.; Tam, M.K.; Taton, D.; Lecommandoux, S. Poly(2-oxazoline)-Based Nanogels as Biocompatible Pseudopolypeptide Nanoparticles. Biomacromolecules 2014, 16, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Dargaville, T.R.; Park, J.-R.; Hoogenboom, R. Poly(2-oxazoline) Hydrogels: State-of-the-Art and Emerging Applications. Macromol. Biosci. 2018, 18, 1800070. [Google Scholar] [CrossRef]
- Segiet, D.; Stockmann, A.; Sadowski, J.; Katzenberg, F.; Tiller, J.C. Insights in the Thermal Volume Transition of Poly(2-oxazoline) Hydrogels. Macromol. Chem. Phys. 2021, 222, 2100157. [Google Scholar] [CrossRef]
- Trachsel, L.; Johnbosco, C.; Lang, T.; Benetti, E.M.; Zenobi-Wong, M. Double-Network Hydrogels Including Enzymatically Crosslinked Poly-(2-alkyl-2-oxazoline)s for 3D Bioprinting of Cartilage-Engineering Constructs. Biomacromolecules 2019, 20, 4502–4511. [Google Scholar] [CrossRef]
- Kelly, A.M.; Wiesbrock, F. Strategies for the Synthesis of Poly(2-oxazoline)-Based Hydrogels. Macromol. Rapid Commun. 2012, 33, 1632–1647. [Google Scholar] [CrossRef] [PubMed]
- Zahoranová, A.; Kroneková, Z.; Zahoran, M.; Chorvát, D.; Janigová, I.; Kronek, J. Poly(2-oxazoline) hydrogels crosslinked with aliphatic bis(2-oxazoline)s: Properties, cytotoxicity, and cell cultivation. J. Polym. Sci. Part A Polym. Chem. 2015, 54, 1548–1559. [Google Scholar] [CrossRef]
- Li, T.; Tang, H.; Wu, P. Structural investigation of thermo-responsive poly(2-isopropyl-2-oxazoline) hydrogel across the volume phase transition. Soft Matter 2015, 11, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
- Hartlieb, M.; Pretzel, D.; Kempe, K.; Fritzsche, C.; Paulus, R.M.; Gottschaldt, M.; Schubert, U.S. Cationic poly(2-oxazoline) hydrogels for reversible DNA binding. Soft Matter 2013, 9, 4693–4704. [Google Scholar] [CrossRef]
- Hahn, L.; Karakaya, E.; Zorn, T.; Sochor, B.; Maier, M.; Stahlhut, P.; Forster, S.; Fischer, K.; Seiffert, S.; Pöppler, A.-C.; et al. An Inverse Thermogelling Bioink Based on an ABA-Type Poly(2-oxazoline) Amphiphile. Biomacromolecules 2021, 22, 3017–3027. [Google Scholar] [CrossRef] [PubMed]
- Lübtow, M.M.; Mrlik, M.; Hahn, L.; Altmann, A.; Beudert, M.; Lühmann, T.; Luxenhofer, R. Temperature-Dependent Rheological and Viscoelastic Investigation of a Poly(2-methyl-2-oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline)-Based Thermogelling Hydrogel. J. Funct. Biomater. 2019, 10, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Y.; Kobayashi, K.; Colak, B.; Luo, P.; Cozens, E.; Fields, L.; Suzuki, K.; Gautrot, J. Engineered cell-degradable poly(2-alkyl-2-oxazoline) hydrogel for epicardial placement of mesenchymal stem cells for myocardial repair. Biomaterials 2021, 269, 120356. [Google Scholar] [CrossRef]
- Boerman, M.A.; Roozen, E.A.; Franssen, G.M.; Bender, J.C.; Hoogenboom, R.; Leeuwenburgh, S.C.; Laverman, P.; van Hest, J.C.; van Goor, H.; Lanao, R.P.F. Degradation and excretion of poly(2-oxazoline) based hemostatic materials. Materialia 2020, 12, 100763. [Google Scholar] [CrossRef]
- Boerman, M.A.; Roozen, E.; Sánchez-Fernández, M.J.; Keereweer, A.R.; Lanao, R.P.F.; Bender, J.C.M.E.; Hoogenboom, R.R.; Leeuwenburgh, S.; Jansen, J.A.; Van Goor, H.; et al. Next Generation Hemostatic Materials Based on NHS-Ester Functionalized Poly(2-oxazoline)s. Biomacromolecules 2017, 18, 2529–2538. [Google Scholar] [CrossRef] [PubMed]
- Manjula, M.K.; Rai, K.M.L.; Raj, J.M.; Manjula, C.S.; Siddaramaiah; Ranganathaiah, C. Microwave assisted improvement in physico-mechanical properties of poly(vinyl alcohol)/poly(ethylene imine)/gelatin blends. J. Polym. Res. 2009, 17, 89–98. [Google Scholar] [CrossRef]
- Rathna, G.V.N. Gelatin hydrogels: Enhanced biocompatibility, drug release and cell viability. J. Mater. Sci. Mater. Electron. 2008, 19, 2351–2358. [Google Scholar] [CrossRef]
- Dargaville, T.R.; Harkin, D.G.; Park, J.-R.; Cavalcanti, A.; Bolle, E.C.L.; Savi, F.M.; Farrugia, B.L.; Monnery, B.D.; Bernhard, Y.; Van Guyse, J.F.R.; et al. Poly(2-allylamidopropyl-2-oxazoline)-Based Hydrogels: From Accelerated Gelation Kinetics to In Vivo Compatibility in a Murine Subdermal Implant Model. Biomacromolecules 2021, 22, 1590–1599. [Google Scholar] [CrossRef]
- Tytgat, L.; Van Damme, L.; Van Hoorick, J.; Declercq, H.; Thienpont, H.; Ottevaere, H.; Blondeel, P.; Dubruel, P.; Van Vlierberghe, S. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Acta Biomater. 2019, 94, 340–350. [Google Scholar] [CrossRef]
- Li, L.; Lu, C.; Wang, L.; Chen, M.; White, J.; Hao, X.; McLean, K.M.; Chen, H.; Hughes, T.C. Gelatin-Based Photocurable Hydrogels for Corneal Wound Repair. ACS Appl. Mater. Interfaces 2018, 10, 13283–13292. [Google Scholar] [CrossRef]
- Gajendiran, M.; Rhee, J.-S.; Kim, K. Recent Developments in Thiolated Polymeric Hydrogels for Tissue Engineering Applications. Tissue Eng. Part B: Rev. 2018, 24, 66–74. [Google Scholar] [CrossRef]
- Feng, Q.; Li, Q.; Wen, H.; Chen, J.; Liang, M.; Huang, H.; Lan, D.; Dong, H.; Cao, X. Injection and Self-Assembly of Bioinspired Stem Cell-Laden Gelatin/Hyaluronic Acid Hybrid Microgels Promote Cartilage Repair In Vivo. Adv. Funct. Mater. 2019, 29, 1906690. [Google Scholar] [CrossRef]
- Cho, H.; Kim, J.; Kim, S.; Jung, Y.C.; Wang, Y.; Kang, B.-J.; Kim, K. Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects. J. Control Release 2020, 327, 284–295. [Google Scholar] [CrossRef]
- Duggan, S.; O’Donovan, O.; Owens, E.; Cummins, W.; Hughes, H. Synthesis of mucoadhesive thiolated gelatin using a two-step reaction process. Eur. J. Pharm. Biopharm. 2015, 91, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Kommareddy, S.; Amiji, M. Preparation and Evaluation of Thiol-Modified Gelatin Nanoparticles for Intracellular DNA Delivery in Response to Glutathione. Bioconjugate Chem. 2005, 16, 1423–1432. [Google Scholar] [CrossRef]
- Rohrer, J.; Partenhauser, A.; Zupančič, O.; Leonavičiūtė, G.; Podričnik, S.; Bernkop-Schnürch, A. Thiolated gelatin films: Renaissance of gelatin as sustained intraoral dosage form. Eur. Polym. J. 2017, 87, 48–59. [Google Scholar] [CrossRef]
- Madkhali, O.; Mekhail, G.; Wettig, S.D. Modified gelatin nanoparticles for gene delivery. Int. J. Pharm. 2019, 554, 224–234. [Google Scholar] [CrossRef]
- Puri, V.; Sharma, A.; Kumar, P.; Singh, I. Thiolation of Biopolymers for Developing Drug Delivery Systems with Enhanced Mechanical and Mucoadhesive Properties: A Review. Polymers 2020, 12, 1803. [Google Scholar] [CrossRef]
- Cao, Y.; Lee, B.H.; Peled, H.B.; Venkatraman, S.S. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation. J. Biomed. Mater. Res. 2016, 104, 2401–2411. [Google Scholar] [CrossRef]
- Fu, Y.; Xu, K.; Zheng, X.; Giacomin, A.J.; Mix, A.W.; Kao, W.J. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels. Biomaterials 2012, 33, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, X.Z.; Liu, Y.; Palumbo, F.; Prestwich, G.D. Disulfide-crosslinked hyaluronan-gelatin hydrogel films: A covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 2003, 24, 3825–3834. [Google Scholar] [CrossRef]
- Russo, L.; Sgambato, A.; Visone, R.; Occhetta, P.; Moretti, M.; Rasponi, M.; Nicotra, F.; Cipolla, L. Gelatin hydrogels via thiol-ene. Chemistry 2015, 147, 587–592. [Google Scholar] [CrossRef]
- Bouten, P.J.M.; Hertsen, D.; Vergaelen, M.; Monnery, B.D.; Catak, S.; Van Hest, J.C.M.; Van Speybroeck, V.; Hoogenboom, R. Synthesis of poly(2-oxazoline)s with side chain methyl ester functionalities: Detailed understanding of living copolymerization behavior of methyl ester containing monomers with 2-alkyl-2-oxazolines. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 2649–2661. [Google Scholar] [CrossRef]
- Lin, P.; Clash, C.; Pearce, E.M.; Kwei, T.K.; Aponte, M.A. Solubility and miscibility of poly(ethyl oxazoline). J. Polym. Sci. Part B Polym. Phys. 1988, 26, 603–619. [Google Scholar] [CrossRef]
- Christova, D.; Velichkova, R.; Loos, W.; Goethals, E.J.; Du Prez, F. New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymer 2003, 44, 2255–2261. [Google Scholar] [CrossRef]
- Hoogenboom, R.; Thijs, H.M.L.; Jochems, M.J.H.C.; van Lankvelt, B.M.; Fijten, M.W.M.; Schubert, U.S. Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: Alternatives to poly(N-isopropylacrylamide)? Chem. Commun. 2008, 5758–5760. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.E.; Szoka, F.C.; Fréchet, J.M.J. Soluble Polymer Carriers for the Treatment of Cancer: The Importance of Molecular Architecture. Accounts Chem. Res. 2009, 42, 1141–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyffels, L.; Verbrugghen, T.; Monnery, B.D.; Glassner, M.; Stroobants, S.; Hoogenboom, R.; Staelens, S. μPET imaging of the pharmacokinetic behavior of medium and high molar mass 89 Zr-labeled poly(2-ethyl-2-oxazoline) in comparison to poly(ethylene glycol). J. Control Release 2016, 235, 63–71. [Google Scholar] [CrossRef]
- Glassner, M.; Palmieri, L.; Monnery, B.; Verbrugghen, T.; Deleye, S.; Stroobants, S.; Staelens, S.; Wyffels, L.; Hoogenboom, R. The Label Matters: μPET Imaging of the Biodistribution of Low Molar Mass 89Zr and 18F-Labeled Poly(2-ethyl-2-oxazoline). Biomacromolecules 2017, 18, 96–102. [Google Scholar] [CrossRef]
- Monnery, B.D.; Jerca, V.V.; Sedlacek, O.; Verbraeken, B.; Cavill, R.; Hoogenboom, R. Defined High Molar Mass Poly(2-oxazoline)s. Angew. Chem. Int. Ed. 2018, 57, 15400–15404. [Google Scholar] [CrossRef]
- Park, J.-S.; Akiyama, Y.; Winnik, F.M.; Kataoka, K. Versatile Synthesis of End-Functionalized Thermosensitive Poly(2-isopropyl-2-oxazolines). Macromolecules 2004, 37, 6786–6792. [Google Scholar] [CrossRef]
- Vergaelen, M.; Verbraeken, B.; Van Guyse, J.F.R.; Podevyn, A.; Tigrine, A.; De La Rosa, V.R.; Monnery, B.D.; Hoogenboom, R. Ethyl acetate as solvent for the synthesis of poly(2-ethyl-2-oxazoline). Green Chem. 2020, 22, 1747–1753. [Google Scholar] [CrossRef]
- Wiesbrock, F.; Hoogenboom, R.; Leenen, M.A.M.; Meier, A.M.A.R.; Schubert, U.S. Investigation of the Living Cationic Ring-Opening Polymerization of 2-Methyl-, 2-Ethyl-, 2-Nonyl-, and 2-Phenyl-2-oxazoline in a Single-Mode Microwave Reactor. Macromolecules 2005, 38, 5025–5034. [Google Scholar] [CrossRef]
- Van Guyse, J.F.R.; Xu, X.; Hoogenboom, R. Acyl guanidine functional poly(2-oxazoline)s as reactive intermediates and stimuli-responsive materials. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 2616–2624. [Google Scholar] [CrossRef] [Green Version]
- Van Guyse, J.F.R.; Mees, M.A.; Vergaelen, M.; Baert, M.; Verbraeken, B.; Martens, P.J.; Hoogenboom, R. Amidation of methyl ester side chain bearing poly(2-oxazoline)s with tyramine: A quest for a selective and quantitative approach. Polym. Chem. 2019, 10, 954–962. [Google Scholar] [CrossRef]
- Tori, K.; Tsushima, T.; Tanida, H.; Kushida, K.; Satoh, S. NMR studies of bridged ring systems: XIX—13C-1H spin coupling and13C chemical shift of the bridge methylene in benzonorbornene and benzonorbornadiene. Magn. Reson. Chem. 1974, 6, 324–326. [Google Scholar] [CrossRef]
- Sarwan, T.; Kumar, P.; Choonara, Y.E.; Pillay, V. Hybrid Thermo-Responsive Polymer Systems and Their Biomedical Applica-tions. Front. Mater. 2020, 7, 73. [Google Scholar] [CrossRef]
- Qiao, S.; Wang, H. Temperature-responsive polymers: Synthesis, properties, and biomedical applications. Nano Res. 2018, 11, 5400–5423. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, C.; Feng, G.; Zhang, X. Thermo-Responsive Fluorescent Polymers with Diverse LCSTs for Ratiometric Temperature Sensing through FRET. Polymers 2018, 10, 283. [Google Scholar] [CrossRef] [Green Version]
- William, T.B. Thiolation of Proteins by Reaction with Homocysteine Thiolactone in the Presence of Tertiary Amine. U.S. Patent 3171831A, 14 February 1961. [Google Scholar]
- Van Vlierberghe, S.; Schacht, E.; Dubruel, P. Reversible gelatin-based hydrogels: Finetuning of material properties. Eur. Polym. J. 2011, 47, 1039–1047. [Google Scholar] [CrossRef]
- Markovic, M.; Van Hoorick, J.; Hölzl, K.; Tromayer, M.; Gruber, P.; Nürnberger, S.; Dubruel, P.; Van Vlierberghe, S.; Liska, R.; Ovsianikov, A. Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation. J. Nanotechnol. Eng. Med. 2015, 6, 021001. [Google Scholar] [CrossRef] [Green Version]
- Dargaville, T.R.; Lava, K.; Verbraeken, B.; Hoogenboom, R. Unexpected Switching of the Photogelation Chemistry When Cross-Linking Poly(2-oxazoline) Copolymers. Macromolecules 2016, 49, 4774–4783. [Google Scholar] [CrossRef] [Green Version]
- Hoogenboom, R.; Monnery, B. Method for the Preparation of Uniform, High Molar Mass Cyclic Imino Ether Polymers. U.S. Patent 20170210853A1, July 2015. Available online: https://patents.google.com/patent/US20170210853A1/en?oq=US20170210853A1 (accessed on 7 January 2019).
- Kudryavtseva, E.V.; Sidorova, M.; Ovchinnikov, M.V.; Bespalova, Z.D.; Bushuev, V.N. Comparative evaluation of different methods for disulfide bond formation in synthesis of the HIV-2 antigenic determinant. J. Pept. Res. 2009, 49, 52–58. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podevyn, A.; Van Vlierberghe, S.; Dubruel, P.; Hoogenboom, R. Design and Synthesis of Hybrid Thermo-Responsive Hydrogels Based on Poly(2-oxazoline) and Gelatin Derivatives. Gels 2022, 8, 64. https://doi.org/10.3390/gels8020064
Podevyn A, Van Vlierberghe S, Dubruel P, Hoogenboom R. Design and Synthesis of Hybrid Thermo-Responsive Hydrogels Based on Poly(2-oxazoline) and Gelatin Derivatives. Gels. 2022; 8(2):64. https://doi.org/10.3390/gels8020064
Chicago/Turabian StylePodevyn, Annelore, Sandra Van Vlierberghe, Peter Dubruel, and Richard Hoogenboom. 2022. "Design and Synthesis of Hybrid Thermo-Responsive Hydrogels Based on Poly(2-oxazoline) and Gelatin Derivatives" Gels 8, no. 2: 64. https://doi.org/10.3390/gels8020064
APA StylePodevyn, A., Van Vlierberghe, S., Dubruel, P., & Hoogenboom, R. (2022). Design and Synthesis of Hybrid Thermo-Responsive Hydrogels Based on Poly(2-oxazoline) and Gelatin Derivatives. Gels, 8(2), 64. https://doi.org/10.3390/gels8020064