Study of Ag Nanoparticles in a Polyacrylamide Hydrogel Dosimeters by Optical Technique
Abstract
:1. Introduction
2. Results and Discussion
2.1. Absorption Spectra of PAC Hydrogel Dosimeter
2.2. The Effect of Silver Nitrate Concentration on PAC Hydrogel Dosimeter
2.3. The Effect of Glycerol on the Response of PAC Hydrogel Dosimeter
2.4. Effect of Irradiation Temperature on the Response of PAC Hydrogel Dosimeter
2.5. Stability of Silver Nitrate PAC Hydrogel Dosimeter
2.6. Effective Atomic Numbers and Water Equivalency of PAC Hydrogel Dosimeter
2.7. Uncertainty Assessments
2.8. Comparing the Response of PAC Hydrogel Dosimeter with Silver Nitrate Gel Dosimeter
3. Conclusions and Remarks
4. Materials and Methods
4.1. Sample Preparation
4.2. Samples Irradiation and Characterization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, N.A.; Nicolucci, P.; Baffa, O. Spatial resolution of magnetic resonance imaging Fricke-gel dosimetry is improved with a honeycomb phantom. Med. Phys. 2003, 30, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Oldham, M.; Siewerdsen, J.H.; Shetty, A.; Jaffray, D.A. High resolution gel-dosimetry by optical-CT and MR scanning. Med. Phys. 2001, 28, 1436–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrale, M.; D’Errico, F. Hydrogels for Three-Dimensional Ionizing-Radiation Dosimetry. Gels 2021, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Alyani Nezhad, Z.; Geraily, G. A review study on application of gel dosimeters in low energy radiation dosimetry. Appl. Radiat. Isot. 2022, 179, 110015. [Google Scholar] [CrossRef] [PubMed]
- Gore, J.C.; Kang, Y.S. Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys. Med. Biol. 1984, 29, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Doran, S.J. The history and principles of chemical dosimetry for 3-D radiation fields: Gels, polymers and plastics. Appl. Radiat. Isot. 2009, 67, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, L.J. Review of Fricke gel dosimeters. J. Phys. Conf. Ser. 2004, 3, 9–21. [Google Scholar] [CrossRef]
- Schreiner, L.J. True 3D chemical dosimetry (gels, plastics): Development and clinical role. J. Phys. Conf. Ser. 2015, 573, 012003. [Google Scholar] [CrossRef]
- Fathima, K. Study on the Role of Gold Nanoparticles on External Beam Radiation Using Fricke Gel. Int. J. Innov. Sci. Res. Technol. 2019, 4, 173–178. [Google Scholar]
- Gambarini, G.; Veronese, I.; Bettinelli, L.; Felisi, M.; Gargano, M.; Ludwig, N.; Lenardi, C.; Carrara, M.; Collura, G.; Gallo, S.; et al. Study of optical absorbance and MR relaxation of Fricke xylenol orange gel dosimeters. Radiat. Meas. 2017, 106, 622–627. [Google Scholar] [CrossRef]
- Alves, A.V.S.; de Almeida, W.S.; Sussuchi, E.M.; Lazzeri, L.; D’Errico, F.; de Souza, S.O. Investigation of chelating agents/ligands for Fricke gel dosimeters. Radiat. Phys. Chem. 2018, 150, 151–156. [Google Scholar] [CrossRef]
- Gallo, S.; Pasquale, S.; Lenardi, C.; Veronese, I.; Gueli, A.M. Effect of ionizing radiation on the colorimetric properties of PVA-GTA Xylenol Orange Fricke gel dosimeters. Dyes Pigm. 2021, 187, 109141. [Google Scholar] [CrossRef]
- Gallo, S.; Lizio, D.; Monti, A.F.; Veronese, I.; Brambilla, M.G.; Lenardi, C.; Torresin, A.; Gambarini, G. Temperature behavior of radiochromic poly(vinyl-alcohol)-glutaraldehyde Fricke gel dosimeters in practice. J. Phys. D Appl. Phys. 2020, 53, 36. [Google Scholar] [CrossRef]
- Soliman, Y.S.; El Gohary, M.I.; Abdel Gawad, M.H.; Amin, E.A.; Desouky, O.S. Fricke gel dosimeter as a tool in quality assurance of the radiotherapy treatment plans. Appl. Radiat. Isot. 2017, 120, 126–132. [Google Scholar] [CrossRef]
- Baldock, C.; Harris, P.J.; Piercy, A.R.; Healy, B. Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method. Australas. Phys. Eng. Sci. Med. 2001, 24, 19–30. [Google Scholar] [CrossRef]
- Olsson, L.E.; Westrin, B.A.; Fransson, A.; Nordell, B. Diffusion of ferric ions in agarose dosimeter gels. Phys. Med. Biol. 1992, 37, 2243–2252. [Google Scholar] [CrossRef]
- Babic, S.; Battista, J.; Jordan, K. Radiochromic leuco dye micelle hydrogels: II. Low diffusion rate leuco crystal violet gel. Phys. Med. Biol. 2009, 54, 6791–6808. [Google Scholar] [CrossRef]
- Babic, S.; McNiven, A.; Battista, J.; Jordan, K. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning. Phys. Med. Biol. 2009, 54, 2463–2481. [Google Scholar] [CrossRef]
- Titus, D.; Samuel, E.J.J.; Mohana Roopan, S. Current scenario of biomedical aspect of metal-based nanoparticles on gel dosimetry. Appl. Microbiol. Biotechnol. 2016, 100, 4803–4816. [Google Scholar] [CrossRef]
- Titus, D.; Samuel, E.J.J.; Roopan, S.M. Radiation Dosimetry—A Different Perspective of Polymer Gel. In Gels Horizons: From Science to Smart Materials; Springer: Singapore, 2018; pp. 309–341. [Google Scholar]
- Farahani, S.; Riyahi Alam, N.; Haghgoo, S.; Shirazi, A.; Geraily, G.; Gorji, E.; Kavousi, N. The effect of bismuth nanoparticles in kilovoltage and megavoltage radiation therapy using magnetic resonance imaging polymer gel dosimetry. Radiat. Phys. Chem. 2020, 170, 108573. [Google Scholar] [CrossRef]
- Funaro, M.; Di Bartolomeo, A.; Pelosi, P.; Sublimi Saponetti, M.; Proto, A. Dosimeter based on silver-nanoparticle precursors for medical applications with linear response over a wide dynamic range. Micro Nano Lett. 2011, 6, 759–762. [Google Scholar] [CrossRef]
- Soliman, Y.S. Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements. Radiat. Phys. Chem. 2014, 102, 60–67. [Google Scholar] [CrossRef]
- Vedelago, J.; Mattea, F.; Valente, M. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics. Appl. Radiat. Isot. 2018, 141, 182–186. [Google Scholar] [CrossRef]
- Hassan, M.; Ur Rehman, A.; Waheed, M.M.; Anjum, M.N. Dose of radiation enhancement, using silver nanoparticles in a human tissue equivalent gel dosimeter. J. Pak. Med. Assoc. 2016, 66, 45–48. [Google Scholar]
- Guidelli, E.J.; Ramos, A.P.; Baffa, O. Silver nanoparticle films for metal enhanced luminescence: Toward development of plasmonic radiation detectors for medical applications. Sens. Actuators B Chem. 2016, 224, 248–255. [Google Scholar] [CrossRef]
- Sriram, M.I.; Kanth, S.B.M.; Kalishwaralal, K.; Gurunathan, S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomed. 2010, 5, 753–762. [Google Scholar] [CrossRef] [Green Version]
- Franco-Molina, M.A.; Mendoza-Gamboa, E.; Sierra-Rivera, C.A.; Gómez-Flores, R.A.; Zapata-Benavides, P.; Castillo-Tello, P.; Alcocer-González, J.M.; Miranda-Hernández, D.F.; Tamez-Guerra, R.S.; Rodríguez-Padilla, C. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J. Exp. Clin. Cancer Res. 2010, 29, 148. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Song, L.; Liu, Y.; Fang, Y.e. Synthesis of silver nanoparticles by γ-ray irradiation in acetic water solution containing chitosan. Radiat. Phys. Chem. 2007, 76, 1165–1168. [Google Scholar] [CrossRef]
- Van Phu, D.; Lang, V.T.K.; Kim Lan, N.T.; Duy, N.N.; Chau, N.D.; Du, B.D.; Cam, B.D.; Hien, N.Q. Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan by γ-irradiation. J. Exp. Nanosci. 2010, 5, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Hettiarachchi, M.A.; Wickramarachchi, P.A.S.R. Synthesis of chitosan stabilized silver nanoparticles using gamma ray irradiation and characterization. J. Sci. Univ. Kelaniya Sri Lanka 2012, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Bin Ahmad, M.; Lim, J.J.; Shameli, K.; Ibrahim, N.A.; Tay, M.Y. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules 2011, 16, 7237–7248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darroudi, M.; Ahmad, M.B.; Hakimi, M.; Zamiri, R.; Zak, A.K.; Hosseini, H.A.; Zargar, M. Preparation, characterization, and antibacterial activity of γ-irradiated silver nanoparticles in aqueous gelatin. Int. J. Miner. Metall. Mater. 2013, 20, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Temgire, M.K.; Joshi, S.S. Optical and structural studies of silver nanoparticles. Radiat. Phys. Chem. 2004, 71, 1039–1044. [Google Scholar] [CrossRef]
- Puišo, J.; Laurikaitiene, J.; Adliene, D.; Prosyčevas, I. Liquid radiation detectors based on nanosilver surface plasmon resonance phenomena. Radiat. Prot. Dosim. 2010, 139, 353–356. [Google Scholar] [CrossRef]
- Tadros, S.M.; Soliman, Y.S.; Beshir, W.B.; Saad, G.R.; Ali, L. Dosimetric investigations on radiation-induced Ag nanoparticles in a gel dosimeter. J. Radioanal. Nucl. Chem. 2021, 329, 463–473. [Google Scholar] [CrossRef]
- Salaheldin, H.I.; Almalki, M.H.K.; Hezma, A.E.M.; Osman, G.E.H. Facile synthesis of silver nanoparticles mediated by polyacrylamide-reduction approach to antibacterial application. IET Nanobiotechnol. 2017, 11, 448–453. [Google Scholar] [CrossRef]
- Rabilloud, T.; Vuillard, L.; Gilly, C.; Lawrence, J.J. Silver-staining of proteins in polyacrylamide gels: A general overview. Cell. Mol. Biol. 2009, 40, 57–75. [Google Scholar] [CrossRef]
- Xiong, Y.; Siekkinen, A.R.; Wang, J.; Yin, Y.; Kim, M.J.; Xia, Y. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. J. Mater. Chem. 2007, 17, 2600–2602. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mukherjee, M. Nitrogen-mediated interaction in polyacrylamide–silver nanocomposites. J. Phys. Condens. Matter 2006, 18, 11233. [Google Scholar] [CrossRef]
- Ramnani, S.P.Ã.; Biswal, J.; Sabharwal, S. Synthesis of silver nanoparticles supported on silica aerogel using gamma radiolysis. Radiat. Phys. Chem. 2007, 76, 1290–1294. [Google Scholar] [CrossRef]
- Yiwei, A.; Yunxia, Y.; Shuanglong, Y.; Lihua, D.; Guorong, C. Preparation of spherical silver particles for solar cell electronic paste with gelatin protection. Mater. Chem. Phys. 2007, 104, 158–161. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, M. Antimicrobial gelatin nanofibers containing silver nanoparticles. Fibers Polym. 2008, 9, 685–690. [Google Scholar] [CrossRef]
- Naghavi, K.; Saion, E.; Rezaee, K.; Yunus, W.M.M. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation. Radiat. Phys. Chem. 2010, 79, 1203–1208. [Google Scholar] [CrossRef]
- Eid, M. Gamma Radiation Synthesis and Characterization of Starch Based Polyelectrolyte Hydrogels Loaded Silver Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2011, 21, 297–305. [Google Scholar] [CrossRef]
- Díaz-Álvarez, A.; Cadierno, V. Glycerol: A promising Green Solvent and Reducing Agent for Metal-Catalyzed Transfer Hydrogenation Reactions and Nanoparticles Formation. Appl. Sci. 2013, 3, 55–69. [Google Scholar] [CrossRef]
- Liu, T.; Baek, D.R.; Kim, J.S.; Joo, S.-W.; Lim, J.K. Green Synthesis of Silver Nanoparticles with Size Distribution Depending on Reducing Species in Glycerol at Ambient pH and Temperatures. ACS Omega 2020, 5, 16246–16254. [Google Scholar] [CrossRef]
- Kou, J.; Varma, R.S. Speedy fabrication of diameter-controlled Ag nanowires using glycerol under microwave irradiation conditions. Chem. Commun. 2013, 49, 692–694. [Google Scholar] [CrossRef]
- Sharpe, P.; Miller, A. Guidelines for the Calibration of Routine Dosimetry Systems for use in Radiation Processing. NPL Report CIRM 29; National Physical Laboratory: Teddington, UK, 2009. [Google Scholar] [CrossRef]
- Berger, M.J.; Hubbell, J.H.; Seltzer, S.M.; Chang, J.; Coursey, J.S.; Sukumar, R.; Zucker, D.S.; Olsen, K. XCOM: Photon Cross Section Database (Version 1.5); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010. Available online: http://physics.nist.gov/xcom (accessed on 2 March 2022).
- Taylor, M.L.; Smith, R.L.; Dossing, F.; Franich, R.D. Robust calculation of effective atomic numbers: The Auto- Z eff software. Med. Phys. 2012, 39, 1769–1778. [Google Scholar] [CrossRef]
- Smith, C.L.; Ackerly, T.; Best, S.P.; Gagliardi, F.; Kie, K.; Little, P.J.; McCorkell, G.; Sale, C.A.; Tsunei, Y.; Tominaga, T.; et al. Determination of dose enhancement caused by gold-nanoparticles irradiated with proton, X-rays (kV and MV) and electron beams, using alanine/EPR dosimeters. Radiat. Meas. 2015, 82, 122–128. [Google Scholar] [CrossRef]
- Sathiyaraj, P.; Samuel, E.J.J.; Valeriano, C.C.S.; Kurudirek, M. Effective atomic number and buildup factor calculations for metal nano particle doped polymer gel. Vacuum 2017, 143, 138–149. [Google Scholar] [CrossRef]
- Brennan, S.; Cowan, P.L. A suite of programs for calculating x-ray absorption, reflection, and diffraction performance for a variety of materials at arbitrary wavelengths. Rev. Sci. Instrum. 1992, 63, 850–853. [Google Scholar] [CrossRef]
- Gibbons, J.P. Khan’s the Physics of Radiation Therapy, 6th ed.; Wolters Kluwer Health: Philadelphia, PA, USA, 2019; ISBN 9781496397539. [Google Scholar]
- Hubbell, J.H.; Seltzer, S.M.; Hubblell, H.J.; Seltzer, M.S. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (Version 1.4); National Institute of Standards and Technolog: Gaithersburg, MD, USA, 2004. Available online: http://physics.nist.gov/xaamdi (accessed on 2 March 2022).
- Abdel-Fattah, A.A.; Abdel-Rehim, F.; Soliman, Y.S. A new label dosimetry system based on pentacosa-diynoic acid monomer for low dose applications. Radiat. Phys. Chem. 2012, 81, 70–76. [Google Scholar] [CrossRef]
- Soliman, Y.S.; Beshir, W.B.; Abdelgawad, M.H.; Bräuer-Krisch, E.; Abdel-Fattah, A.A. Pergascript orange-based polymeric solution as a dosimeter for radiotherapy dosimetric validation. Phys. Med. 2019, 57, 169–176. [Google Scholar] [CrossRef]
- Abdel-Fattah, A.A.; Beshir, W.B.; Hassan, H.M.; Soliman, Y.S. Radiation-induced coloration of nitro blue tetrazolium gel dosimeter for low dose applications. Radiat. Meas. 2017, 100, 18–26. [Google Scholar] [CrossRef]
Absorbed Dose (Gy) | Unit |
---|---|
0.0 | |
5.0 | |
15.0 | |
25.0 | |
50.0 | |
75.0 | |
100.0 |
Composition of PAC Hydrogel Dosimeter | Sensitivity ± S.D., Gy−1cm−1 | R2 | ∆ (%) | ||
---|---|---|---|---|---|
PAC, % | [AgNO3], mM | Glycerol, % | |||
2 | 20 | - | 0.00283 ± 0.00003 | 0.9992 | 0.00 |
2 | 50 | - | 0.00360 ± 0.00007 | 0.9975 | +27.21 |
2 | 100 | - | 0.00479 ± 0.00007 | 0.9987 | +69.26 |
2 | 150 | - | 0.00427 ± 0.00009 | 0.9973 | +50.88 |
Composition of PAC Hydrogel Dosimeter | Sensitivity ± S.D., Gy−1cm−1 | R2 | ∆ (%) | ||
---|---|---|---|---|---|
PAC, % | [AgNO3], mM | Glycerol, % | |||
2 | 100 | 0 | 0.00479 ± 0.00007 | 0.9987 | 0 |
2 | 100 | 5 | 0.00563 ± 0.00004 | 0.9997 | +17.54 |
2 | 100 | 15 | 0.00620 ± 0.00008 | 0.9991 | +29.43 |
2 | 100 | 25 | 0.00613 ± 0.00002 | 0.9968 | +27.97 |
Symbol | Z Number | Fraction by Weight (without Glycerol) | Fraction by Weight (with 15% Glycerol) |
---|---|---|---|
H | 1 | 0.109178 | 0.104578 |
C | 6 | 0.010139 | 0.084087 |
N | 7 | 0.005341 | 0.005341 |
O | 8 | 0.864560 | 0.795212 |
Ag | 47 | 0.010782 | 0.010782 |
Source of Uncertainty | Type of Uncertainty | Standard Uncertainty (%) |
---|---|---|
Calibration irradiation dose rate | B | 1.145 a |
Irradiation facility | B | 0.44 |
Instrumental variation | A | 0.04 |
Reproducibility of measurements | A | 0.42 |
Batch variability | A | 1.03 |
Calibration curve fit | A | 1.1 |
Post-irradiation stability | A | 0.36 |
Combined standard uncertainty (uc), 1σ | 2.02 | |
overall uncertainty (2σ) | 4.04 |
PAC Hydrogel Dosimeter Composition | [PAC] % w/v | [AgNO3] mM | [Glycerol] % v/v |
---|---|---|---|
1 | 2 | 20 | 0 |
2 | 2 | 50 | 0 |
3 | 2 | 100 | 0 |
4 | 2 | 150 | 0 |
5 | 2 | 100 | 5 |
6 | 2 | 100 | 15 |
7 | 2 | 100 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliman, Y.S.; Tadros, S.M.; Beshir, W.B.; Saad, G.R.; Gallo, S.; Ali, L.I.; Naoum, M.M. Study of Ag Nanoparticles in a Polyacrylamide Hydrogel Dosimeters by Optical Technique. Gels 2022, 8, 222. https://doi.org/10.3390/gels8040222
Soliman YS, Tadros SM, Beshir WB, Saad GR, Gallo S, Ali LI, Naoum MM. Study of Ag Nanoparticles in a Polyacrylamide Hydrogel Dosimeters by Optical Technique. Gels. 2022; 8(4):222. https://doi.org/10.3390/gels8040222
Chicago/Turabian StyleSoliman, Yasser S., Soad M. Tadros, Wafaa B. Beshir, Gamal R. Saad, Salvatore Gallo, Laila I. Ali, and Magdi M. Naoum. 2022. "Study of Ag Nanoparticles in a Polyacrylamide Hydrogel Dosimeters by Optical Technique" Gels 8, no. 4: 222. https://doi.org/10.3390/gels8040222
APA StyleSoliman, Y. S., Tadros, S. M., Beshir, W. B., Saad, G. R., Gallo, S., Ali, L. I., & Naoum, M. M. (2022). Study of Ag Nanoparticles in a Polyacrylamide Hydrogel Dosimeters by Optical Technique. Gels, 8(4), 222. https://doi.org/10.3390/gels8040222