Investigation on In Situ Carbon-Coated ZnFe2O4 as Advanced Anode Material for Li-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental
4.1. The Electrochemical Studies
4.2. Characterization Details
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodenough, J.B.; Kim,, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Joshua, J.R.; Maiyalagan, T.; Lee, Y.S.; Sivakumar, N. Advanced High Voltage Cathode Materials for Rechargeable Li Ion batteries; CRC Press: Boca Raton, FL, USA, 2020; Volume 171. [Google Scholar]
- Armand, M.; Tarascon, J.M. Lithium Storage Mechanism in Purpurin based Organic Lithium ion Battery Electrodes. Nature 2008, 451, 637–652. [Google Scholar]
- Bruce, P.G.; Scrosati, B.; Tarascon, J.M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Y.; Wei, Z.Y.; Jin, B.; Zhong, X.B.; Wang, H.; Zhang, W.X.; Liang, J.C.; Jiang, Q. One-Pot Synthesis and High Electrochemical Performance of CuS/Cu1.8S Nanocomposites as Anodes for Lithium-Ion Batteries. Pubmed. Cent. 2013, 277, 268–271. [Google Scholar]
- Hou, L.R.; Lian, L.; Zhang, L.H.; Pang, G.; Yuan, C.Z.; Zhang, X.G. Ultrahigh-performance mesoporous ZnMn2O4 microspheres as anode materials for lithium-ion batteries and their in situ Raman investigation. Adv. Funct. Mater. 2015, 25, 238–246. [Google Scholar] [CrossRef]
- Yao, J.H.; Zhang, Y.F.; Yan, J.; Bin, H.; Li, Y.W.; Xiao, S.H. Nanoparticles-constructed spinel ZnFe2O4 anode material with superior lithium storage performance boosted by pseudocapacitance. Mater. Res. Bull. 2018, 104, 188–193. [Google Scholar] [CrossRef]
- Yang, T.B.; Zhang, W.X.; Li, L.L.; Jin, B.; Jin, E.M.; Jeong, S.; Jiang, Q. In-situ synthesized ZnFe2O4 firmly anchored to the surface of MWCNTs as a long-life anode material with high lithium storage performance. Appl. Sur. Sci. 2017, 425, 978–987. [Google Scholar] [CrossRef]
- Wang, N.N.; Xu, H.Y.; Chen, L.; Gu, X.; Yang, J.; Qian, Y.T. A general approach for MFe2O4 (M = Zn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries. J. Power Source 2014, 247, 163–169. [Google Scholar] [CrossRef]
- Zhang, W.; Zu, L.H.; Kong, B.; Chen, B.J.; He, H.L.; Lan, K.; Liu, Y.; Yang, J.H.; Zhao, D.Y. Mesoporous TiO2/TiC@ C composite membranes with stable TiO2-C interface for robust lithium storage. Science 2018, 3, 149–160. [Google Scholar] [CrossRef]
- Reddy, A.L.M.; Shaijumon, M.M.; Gowda, S.R.; Ajayan, P.M. Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries. Nano Lett. 2009, 9, 1002–1006. [Google Scholar] [CrossRef]
- Joshua, J.R.; Lee, Y.S.; Maiyalagan, T.; Nallamuthu, N.; Sivakumar, N. Na0.4(Mn0.33Co0.33Ni0.33)O2 surface grafted with SnO nanorods: A cathode materials for rechargeable sodium ion batteries. J. Electroanal. Chem. 2020, 856, 113633. [Google Scholar] [CrossRef]
- Jayachitra, J.; Balamurugan, A.; Joshua, J.R.; Sharmila, V. Enhancing the electrochemical performance by structural evolution in O3-NaFe1-xMgxO2 cathodes for sodium ion batteries. Inorg. Chem. Commun. 2021, 129, 108528. [Google Scholar] [CrossRef]
- Sharmila, V.; Parthibavarman, M. Lithium manganese phosphate associated with MWCNT: Enhanced positive electrode for lithium hybrid batteries. J. Alloys Compd. 2021, 858, 157715. [Google Scholar] [CrossRef]
- Jiao, F.; Bruce, P.G. Mesoporous Crystalline β-MnO2—A Reversible Positive Electrode for Rechargeable Lithium Batteries. Adv. Mater. 2007, 19, 657–660. [Google Scholar] [CrossRef]
- Park, J.C.; Kim, J.; Kwon, H.; Song, H. Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials. Adv. Mater. 2009, 21, 803–807. [Google Scholar] [CrossRef]
- Gao, X.P.; Bao, J.L.; Pan, G.L.; Zhu, H.Y.; Huang, P.X.; Wu, F.; Song, D.Y. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J. Phys. Chem. B 2004, 108, 5547–5551. [Google Scholar] [CrossRef]
- Wang, B.; Wu, X.L.; Shu, C.Y.; Guo, Y.G.; Wang, C.R. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 2010, 20, 10661–10664. [Google Scholar] [CrossRef]
- Zhang, W.M.; Wu, X.L.; Hu, J.S.; Guo, Y.G.; Wan, L.J. Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries. Adv. Funct. Mater. 2008, 18, 3941–3946. [Google Scholar] [CrossRef]
- Luo, J.S.; Liu, J.L.; Zeng, Z.Y.; Ng, C.F.; Ma, L.J.; Zhang, H.; Lin, J.Y.; Shen, Z.X.; Fan, H.J. Three-Dimensional Graphene Foam Supported Fe3O4 Lithium Battery Anodes with Long Cycle Life and High Rate Capability. Nano Lett. 2013, 13, 6136–6143. [Google Scholar] [CrossRef]
- Jin, B.; Liu, A.H.; Liu, G.Y.; Yang, Z.Z.; Zhong, X.B.; Ma, X.Z.; Yang, M.; Wang, H.Y. Fe3O4–pyrolytic graphite oxide composite as an anode material for lithium secondary batteries. Electrochim. Acta 2013, 90, 426–432. [Google Scholar] [CrossRef]
- Zhou, G.M.; Wang, D.W.; Yin, L.C.; Li, N.; Li, F.; Cheng, H.M. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 2012, 6, 3214–3223. [Google Scholar] [CrossRef] [PubMed]
- Varghese, B.; Reddy, M.V.; Yanwu, Z.; Lit, C.S.; Hoong, T.C.; Rao, G.V.S.; Chowdari, B.V.R.; Wee, A.T.S.; Lim, C.T.; Sow, C.H. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 2008, 20, 3360–3367. [Google Scholar] [CrossRef]
- Liu, H.; Wang, G.X.; Liu, J.; Qiao, S.Z.; Ahn, H.J. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. Mater. Chem. 2011, 21, 3046–3052. [Google Scholar] [CrossRef]
- Xing, Z.; Ju, Z.C.; Yang, J.; Xu, H.Y.; Qian, Y.T. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Res. 2012, 5, 477–485. [Google Scholar] [CrossRef]
- Teh, P.F.; Pramana, S.S.; Sharma, Y.; Ko, Y.W.; Madhavi, S. Electrospun Zn1–xMnxFe2O4 Nanofibers As Anodes for Lithium-Ion Batteries and the Impact of Mixed Transition Metallic Oxides on Battery Performance. ACS Appl. Mater. Interfaces 2013, 5, 5461–5467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; He, Y.; Wang, Y.; Liang, Y.; Majeed, A.; Yang, Z.; Yao, S.; Shen, X.; Li, T.; Qin, S. Porous N-doped carbon nanofibers assembled with nickel ferrite nanoparticles as efficient chemical anchors and polysulfide conversion catalyst for lithium-sulfur batteries. J. Colloid Interface Sci. 2021, 601, 209–219. [Google Scholar]
- Yao, S.; He, Y.; Wang, Y.; Bi, M.; Liang, Y.; Majeed, A.; Yang, Z.; Shen, X. CoFe2O4 nanoparticles loaded N-doped carbon nanofibers networks as electrocatalyst for enhancing redox kinetics in Li-S batteries. Appl. Surf. Sci. 2021, 560, 1449908. [Google Scholar]
- Moustafa, M.G.; Moustafa, M.S.S. Green fabrication of ZnAl2O4-coated LiFePO4 nanoparticles for enhanced electrochemical performance in Li-ion batteries. J. Alloys Compd. 2022, 903, 163910. [Google Scholar] [CrossRef]
- Sanad, M.M.S.; Rashad, K.M.M. Enhancement of the electrochemical performance of hydrothermally prepared anatase nanoparticles for optimal use as high capacity anode materials in lithium ion. Powers Appl. Phys. A 2015, 118, 665–674. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, Y.F.; Shao, H.X. High Capacity ZnFe2O4 Anode. Material for Lithium Ion Batteries. Electrochim. Acta 2011, 56, 9433–9438. [Google Scholar] [CrossRef]
- Zhong, X.B.; Yang, Z.Z.; Wang, H.Y.; Lu, L.; Jin, B.; Zha, M.; Jiang, Q.C. A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries. J. Power Source 2016, 306, 718–723. [Google Scholar] [CrossRef]
- Yao, X.Y.; Kong, J.H.; Zhao, C.Y.; Zhou, D.; Zhou, R.; Lu, X.H. Zinc ferrite nanorods coated with polydopamine-derived carbon for high-rate lithium ion batteries. Electrochim. Acta 2014, 146, 464–471. [Google Scholar] [CrossRef]
- Wang, M.Y.; Huang, Y.; Chen, X.F.; Wang, K.; Wu, H.W.; Zhang, N.; Fu, H.T. Synthesis of nitrogen and sulfur co-doped graphene supported hollow ZnFe2O4 nanosphere composites for application in lithium-ion batteries. J. Alloys Compd. 2017, 691, 407–415. [Google Scholar] [CrossRef]
- Shi, J.J.; Zhou, X.Y.; Liu, Y.; Su, Q.M.; Zhang, J.; Du, G.H. One-pot solvothermal synthesis of ZnFe2O4 nanospheres/graphene composites with improved lithium-storage performance. Mater. Res. Bull. 2015, 65, 204–209. [Google Scholar] [CrossRef]
- Teh, P.F.; Sharma, Y.; Pramanac, S.S.; Srinivasan, M. Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J. Mater. Chem. 2011, 21, 14999–15008. [Google Scholar] [CrossRef]
- Qiao, H.; Li, R.R.; Yu, Y.T.; Xia, Z.K.; Wang, L.J.; Wei, Q.F.; Chen, K.; Qiao, Q.Q. Fabrication of PANI-coated ZnFe2O4 nanofibers with enhanced electrochemical performance for energy storage. Electrochim. Acta 2018, 273, 282–288. [Google Scholar] [CrossRef]
- Dou, Q.Q.; Wong, K.W.; Li, Y.; Ng, K.M. Novel nanosheets of ferrite nanoparticle arrays in carbon matrix from single source precursors: An anode material for lithium-ion batteries. J. Mater. Sci. 2018, 53, 4456–4466. [Google Scholar] [CrossRef]
- Jiang, L.; Dong, C.; Jin, B.; Wen, Z.; Jiang, Q. ZnFe2O4@ PPy core-shell structure for high-rate lithium-ion storage. J. Electroanal. Chem. 2019, 851, 113442. [Google Scholar] [CrossRef]
- NuLi, Y.N.; Chu, Y.Q.; Qin, Q.Z. Nanocrystalline ZnFe2O4 and Ag-Doped ZnFe2O4 Films Used as New Anode Materials for Li-Ion Batteries. J. Electrochem. Soc. 2004, 151, 1077–1083. [Google Scholar] [CrossRef]
- Guo, X.W.; Lu, X.; Fang, X.P.; Mao, Y.; Wang, Z.X.; Chen, L.Q.; Xu, X.X.; Yang, H.; Liu, Y.N. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem. Commun. 2010, 12, 847–850. [Google Scholar]
- Wang, Y.; Jin, Y.H.; Zhang, R.P.; Jia, M.Q. Facile synthesis of ZnFe2O4-graphene aerogels composites as high-performance anode materials for lithium ion batteries. Appl. Surf. Sci. 2017, 413, 50–55. [Google Scholar] [CrossRef]
- Mao, W.; Hou, X.H.; Wang, X.Y.; He, G.N.; Shao, Z.P.; Hu, S.J. Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries. RSC Adv. 2015, 5, 31807–31814. [Google Scholar] [CrossRef]
- Jiang, B.B.; Han, C.P.; Li, B.; He, Y.J.; Lin, Z.Q. In-situ crafting of ZnFe2O4 Nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 2016, 10, 2728–2735. [Google Scholar] [CrossRef]
- Mo, R.W.; Rooney, D.; Sun, K.N. Yolk-shell germanium@ polypyrrole architecture with precision expansion void control for lithium ion batteries. iScience 2018, 9, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Zou, F.; Hu, X.L.; Li, Z.; Qie, L.; Hu, C.C.; Zeng, R.; Jiang, Y.; Huang, Y.H. MOF-derived porous ZnO/ZnFe₂O₄/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 2014, 26, 6622–6628. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Li, D.; Li, W.C.; Lei, C.; Sun, Q.; Lu, A.H. Nanoengineered polypyrrole-coated Fe2O3@C multifunctional composites with an improved cycle stability as lithium-ion anodes. Adv. Funct. Mater. 2013, 23, 1692–1700. [Google Scholar] [CrossRef]
- Nie, L.Y.; Wang, H.J.; Ma, J.J.; Liu, S.; Yuan, R. Sulfur-doped ZnFe2O4 nanoparticles with enhanced lithium storage capabilities. J. Mater. Sci. 2017, 52, 3566–3575. [Google Scholar] [CrossRef]
- Feng, D.; Yang, H.; Guo, X. 3-Dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries 3-Dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries. Chem. Eng. J. 2019, 355, 687–696. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, H.W.; Zhou, L.; Huang, X.D.; Yu, C.Z. Polypyrrole-coated zinc ferrite hollow spheres with improved cycling stability for lithium-ion batteries. Small 2016, 12, 3732–3737. [Google Scholar] [CrossRef]
- Bao, R.Q.; Zhang, Y.R.; Wang, Z.L.; Liu, Y.; Hou, L.R.; Yuan, C.Z. Core-shell N-doped carbon coated zinc ferrite nanofibers with enhanced Li-storage behaviors: A promising anode for Li-ion batteries. Mater. Lett. 2018, 224, 89–91. [Google Scholar] [CrossRef]
- Yao, L.; Deng, H.; Huang, Q.; Su, Q.; Du, G. Three-dimensional carbon-coated ZnFe2O4 nanospheres/nitrogen-doped graphene aerogels as anode for lithiumion batteries. Ceram. Int. 2017, 43, 1022–1028. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, T.; Yue, J.; Sheng, L.; Jiang, Z.; Yang, D.; Yuan, L.; Fan, Z. Ultra-small and highly crystallized ZnFe2O4 nanoparticles within double graphene networks for super-long life lithium-ion batteries. J. Mater. Chem. A 2017, 5, 11188–11196. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, D.; Wang, X.; Qiu, H.; Zhang, T.; Zhang, M.; Tian, G.; Yue, H.; Feng, S.; Chen, G. Porous ZnFe2O4 nanospheres as anode materials for Li-ion battery with high performance. J. Alloys Compd. 2017, 721, 697–704. [Google Scholar] [CrossRef]
- Jia, H.; Kloepsch, R.; He, X.; Evertz, M.; Nowak, S.; Li, J.; Winter, M.; Placke, T. Nanostructured ZnFe2O4 as anode material for lithium ion batteries: Ionic liquid-assisted synthesis and performance evaluation with special emphasis on comparative. Acta Chim. Slov. 2016, 63, 470–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.; Wu, C.; Zhu, Y.; Shen, P.K.; Zhang, K. Hierarchical porous acetylene black/ZnFe2O4@ carbon hybrid materials with high capacity and robust cycling performance for Li-ion batteries. Electrochim. Acta 2016, 187, 584–592. [Google Scholar] [CrossRef]
- Wang, J.; Yang, G.; Wang, L.; Yan, W. Fabrication of the ZnFe2O4 Fiber-in-Tube and Tubular Mesoporous Nanostructures via Single-spinneret Electrospinning: Characterization, Mechanism and Performance as Anodes for Li-ion Batteries. Electrochim. Acta 2016, 222, 1176–1185. [Google Scholar] [CrossRef]
- Lin, L.; Pan, Q. ZnFe2O4@ C/graphene nanocomposites as excellent anode materials for lithium batteries. J. Mater. Chem. A 2015, 3, 1724–1729. [Google Scholar] [CrossRef]
- Dong, Y.; Xia, Y.; Chui, Y.; Cao, C.; Zapien, J.A. Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. J. Power Source 2015, 275, 769–776. [Google Scholar] [CrossRef]
- Wang, B.; Li, S.; Li, B.; Liu, J.; Yu, M. Facile and large-scale fabrication of hierarchical ZnFe2O4/graphene hybrid films as advanced binder-free anodes for lithium-ion batteries. New J. Chem. 2015, 39, 1725–1733. [Google Scholar] [CrossRef]
- Yao, L.; Hou, X.; Hu, S.; Tang, X.; Liu, X.; Ru, Q. An excellent performance anode of ZnFe2O4/flake graphite composite for lithium ion battery. J. Alloys Compd. 2014, 585, 398–403. [Google Scholar] [CrossRef]
- Kim, J.G.; Kim, Y.; Noh, Y.; Kim, W.B. Formation of carbon-coated ZnFe2O4 nanowires and their highly reversible lithium storage properties. RSC Adv. 2014, 4, 27714. [Google Scholar] [CrossRef]
- Mueller, F.; Bresser, D.; Paillard, E.; Winter, M.; Passerini, S. Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. J. Power Source 2013, 236, 87–94. [Google Scholar] [CrossRef]
- Xia, H.; Qian, Y.; Fu, Y.; Wang, X. Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci. 2013, 17, 67–71. [Google Scholar] [CrossRef]
- Bresser, D.; Paillard, E.; Kloepsch, R.; Krueger, S.; Fiedler, M.; Schmitz, R.; Baither, D.; Winter, M.; Passerini, S. Carbon Coated ZnFe2O4 Nanoparticles for Advanced Lithium-Ion Anodes. Adv. Energy Mater. 2013, 3, 513–523. [Google Scholar] [CrossRef]
- Sui, J.; Zhang, C.; Hong, D.; Li, J.; Cheng, Q.; Li, Z.; Cai, W. Facile synthesis of MWCNT–ZnFe2O4 nanocomposites as anode materials for lithium ion batteries. J. Mater. Chem. 2012, 22, 13674. [Google Scholar] [CrossRef]
- Song, W.; Xie, J.; Liu, S.; Cao, G.; Zhu, T.; Zhao, X. Self-assembly of a ZnFe2O4/graphene hybrid and its application as a high-performance anode material for Li-ion batteries. New J. Chem. 2012, 36, 2236. [Google Scholar] [CrossRef]
Electrode Materials | Synthesis Method | Current mA·g−1 | Cycle | Discharge Capacity mAh·g−1 |
---|---|---|---|---|
3D Porous ZnFe2O4 | Sol–Gel | 1000 | 400 | 711 [45] |
ZnFe2O4 Nanofibers | Electro Spinning | 50 | 50 | 1142 [46] |
N-doped Carbon coated ZnFe2O4 | Electro Spinning | 200 | 200 | 881 [47] |
ZnFe2O4 C/N Doped graphene | Hydrothermal Method | 100 | 100 | 952 [48] |
ZnFe2O4/double graphene | Microwave irradiation | 1000 | 200 | 475 [49] |
Porous ZnFe2O4 | Hydrothermal Method | 200 | 80 | 868 [50] |
ZnFe2O4/C | Ionic Liquid | 500 | 190 | 1091 [51] |
Acetylene Black/ZnFe2O4/C | Thermal Decomposition | 1000 | 200 | 430 [52] |
ZnFe2O4/hollow fiber | Electro spinning | 200 | 260 | 1026 [53] |
ZnFe2O4 Nanorods | Co-Precipitation | 100 | 50 | 983 [28] |
ZnFe2O4@C/graphene | Hydrothermal Method | 250 | 180 | 705 [54] |
3D- ZnFe2O4/Graphene | Hydrothermal Method | 100 | 50 | 770 [55] |
ZnFe2O4 Nanosphere/G | Solvothermal | 100 | 50 | 704 [31] |
ZnFe2O4/Graphene | Cathodic Deposition | 200 | 200 | 881 [56] |
ZnFe2O4/Nanoflake/g | Hydrothermal Method | 100 | 100 | 730 [57] |
Carbon Coated ZnFe2O4 Nanowires | Micro-Emulsion | 100 | 100 | 1292 [58] |
ZnFe2O4/C | Planetary Ball-Mill | 100 | 60 | 1100 [59] |
ZnFe2O4/Graphene | Hydrothermal Method | 100 | 50 | 956 [60] |
ZnFe2O4/C | Planetary Ball-Mill | 400 | 160 | 1300 [61] |
MWCNT/ZnFe2O4 | High-Temperature | 60 | 50 | 1152 [62] |
ZnFe2O4 Nano-Octahedral | Hydrothermal Method | 1000 | 300 | 730 [25] |
ZnFe2O4/Graphene | Solvothermal | 400 | 90 | 398 [63] |
ZnFe2O4 Nanofibers | Electro spinning | 60 | 30 | 733 [32] |
In situ ZnFe2O4/C | Sol–Gel | 100 | 50 | 1312 (This Work) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.W.; BaQais, A.; Rahman, M.M.; Aamir, M.; Abuzir, A.; Mushtaq, S.; Amin, M.N.; Khan, M.S. Investigation on In Situ Carbon-Coated ZnFe2O4 as Advanced Anode Material for Li-Ion Batteries. Gels 2022, 8, 305. https://doi.org/10.3390/gels8050305
Alam MW, BaQais A, Rahman MM, Aamir M, Abuzir A, Mushtaq S, Amin MN, Khan MS. Investigation on In Situ Carbon-Coated ZnFe2O4 as Advanced Anode Material for Li-Ion Batteries. Gels. 2022; 8(5):305. https://doi.org/10.3390/gels8050305
Chicago/Turabian StyleAlam, Mir Waqas, Amal BaQais, Mohammed M. Rahman, Muhammad Aamir, Alaaedeen Abuzir, Shehla Mushtaq, Muhammad Nasir Amin, and Muhammad Shuaib Khan. 2022. "Investigation on In Situ Carbon-Coated ZnFe2O4 as Advanced Anode Material for Li-Ion Batteries" Gels 8, no. 5: 305. https://doi.org/10.3390/gels8050305
APA StyleAlam, M. W., BaQais, A., Rahman, M. M., Aamir, M., Abuzir, A., Mushtaq, S., Amin, M. N., & Khan, M. S. (2022). Investigation on In Situ Carbon-Coated ZnFe2O4 as Advanced Anode Material for Li-Ion Batteries. Gels, 8(5), 305. https://doi.org/10.3390/gels8050305