Novel Hydrocolloids Obtained from Mango (Mangifera indica) var. Hilaza: Chemical, Physicochemical, Techno-Functional, and Structural Characteristics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical and Physicochemical Properties of Hydrocolloid
2.2. Hydrocolloids Spectral Features
2.3. Total Phenolic Compounds (TPC) and Antioxidant Activity
2.4. Technological Properties
2.4.1. Solubility
2.4.2. Swelling Index (SI) and Water Holding Capacity (WHC)
2.5. Microstructural Characterization
3. Conclusions
4. Materials and Methods
4.1. Chemical Reagents
4.2. Materials
4.3. Hydrocolloid Extraction
4.4. Physicochemical and Proximal Analysis
4.5. NIR Spectral Measurement
4.6. Determination of Total Phenolic Compounds
4.7. Determination of Antioxidant Activity
4.8. Techno-Functional Properties
4.8.1. Solubility
4.8.2. Swelling Index (%SI)
4.8.3. Water Holding Capacity (%WCH)
4.9. Microstructural Analysis
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jahurul, M.H.A.; Zaidul, I.S.M.; Ghafoor, K.; Al-Juhaimi, F.Y.; Nyam, K.L.; Norulaini, N.A.N.; Sahena, F.; Mohd Omar, A.K. Mango (Mangifera indica L.) by-Products and Their Valuable Components: A Review. Food Chem. 2015, 183, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Niyigaba, T.; Liu, D.; Habimana, J.D.D. The Extraction, Functionalities and Applications of Plant Polysaccharides in Fermented Foods: A Review. Foods 2021, 10, 3004. [Google Scholar] [CrossRef]
- Viebke, C.; Al-Assaf, S.; Phillips, G.O. Food Hydrocolloids and Health Claims. Bioact. Carbohydr. Diet. Fibre 2014, 4, 101–114. [Google Scholar] [CrossRef]
- Alpizar-Reyes, E.; Carrillo-Navas, H.; Gallardo-Rivera, R.; Varela-Guerrero, V.; Alvarez-Ramirez, J.; Pérez-Alonso, C. Functional Properties and Physicochemical Characteristics of Tamarind (Tamarindus indica L.) Seed Mucilage Powder as a Novel Hydrocolloid. J. Food Eng. 2017, 209, 68–75. [Google Scholar] [CrossRef]
- Orgulloso-Bautista, S.; Ortega-Toro, R.; Alberto, L.; Zapateiro, G. Design and Application of Hydrocolloids from Butternut Squash (Cucurbita moschata) Epidermis as a Food Additive in Mayonnaise-Type Sauces. ACS Omega 2021, 6, 5499–5508. [Google Scholar] [CrossRef]
- Rojas-Torres, S.A.; Quintana, S.E.; García-Zapateiro, L.A. Natural Yogurt Stabilized with Hydrocolloids from Butternut Squash (Cucurbita moschata) Seeds: Effect on Physicochemical, Rheological Properties and Sensory Perception. Fluids 2021, 6, 251. [Google Scholar] [CrossRef]
- López-Barraza, D.; Ortega-Ramos, A.; Torregroza-Fuentes, E.; Quintana, S.E.; García-Zapateiro, L.A. Rheological and Functional Properties of Hydrocolloids from Pereskia Bleo Leaves. Fluids 2021, 6, 349. [Google Scholar] [CrossRef]
- De Andrade Vieira, É.; Alves Alcântara, M.; Albuquerque dos Santos, N.; Duarte Gondim, A.; Iacomini, M.; Mellinger, C.; Tribuzy de Magalhães Cordeiro, A.M. Mucilages of Cacti from Brazilian Biodiversity: Extraction, Physicochemical and Technological Properties. Food Chem. 2021, 346, 128892. [Google Scholar] [CrossRef]
- Temenouga, V.; Charitidis, T.; Avgidou, M.; Karayannakidis, P.D.; Dimopoulou, M.; Kalogianni, E.P.; Panayiotou, C.; Ritzoulis, C. Novel Emulsifiers as Products from Internal Maillard Reactions in Okra Hydrocolloid Mucilage. Food Hydrocoll. 2016, 52, 972–981. [Google Scholar] [CrossRef]
- Rashid, F.; Ahmed, Z.; Hussain, S.; Huang, J.Y.; Ahmad, A. Linum usitatissimum L. Seeds: Flax Gum Extraction, Physicochemical and Functional Characterization. Carbohydr. Polym. 2019, 215, 29–38. [Google Scholar] [CrossRef]
- Ying, Z.; Han, X.; Li, J. Ultrasound-Assisted Extraction of Polysaccharides from Mulberry Leaves. Food Chem. 2011, 127, 1273–1279. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, L.; Ettoumi, F.E.; Javed, M.; Li, L.; Lin, X.; Xu, Y.; Lu, Y.; Shao, X.; Luo, Z. Ultrasonic-Assisted Green Extraction of Peach Gum Polysaccharide for Blue-Emitting Carbon Dots Synthesis. Sustain. Chem. Pharm. 2021, 24, 100555. [Google Scholar] [CrossRef]
- Keshani-Dokht, S.; Emam-Djomeh, Z.; Yarmand, M.S.; Fathi, M. Extraction, Chemical Composition, Rheological Behavior, Antioxidant Activity and Functional Properties of Cordia Myxa Mucilage. Int. J. Biol. Macromol. 2018, 118, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, S.; Ayaseh, A.; Ghanbarzadeh, B.; Heshmati, M.K. Pectin from Sunflower By-Product: Optimization of Ultrasound-Assisted Extraction, Characterization, and Functional Analysis. Int. J. Biol. Macromol. 2020, 165, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.L.; Wang, C.; Ma, H.; Ma, Y.; Yan, J.K. Physicochemical and Functional Characteristics of Polysaccharides from Okra Extracted by Using Ultrasound at Different Frequencies. Food Chem. 2021, 361, 130138. [Google Scholar] [CrossRef] [PubMed]
- Samavati, V. Central Composite Rotatable Design for Investigation of Microwave-Assisted Extraction of Okra Pod Hydrocolloid. Int. J. Biol. Macromol. 2013, 61, 142–149. [Google Scholar] [CrossRef]
- Dranca, F.; Talón, E.; Vargas, M.; Oroian, M. Microwave vs. Conventional Extraction of Pectin from Malus Domestica ‘Fălticeni’ Pomace and Its Potential Use in Hydrocolloid-Based Films. Food Hydrocoll. 2021, 121, 107026. [Google Scholar] [CrossRef]
- Arioui, F.; Ait Saada, D.; Cheriguene, A. Physicochemical and Sensory Quality of Yogurt Incorporated with Pectin from Peel of Citrus Sinensis. Food Sci. Nutr. 2017, 5, 358–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mada, T.; Duraisamy, R.; Abera, A.; Guesh, F. Effect of Mixed Banana and Papaya Peel Pectin on Chemical Compositions and Storage Stability of Ethiopian Traditional Yoghurt (Ergo). Int. Dairy J. 2022, 131, 105396. [Google Scholar] [CrossRef]
- Soltanzadeh, M.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Amjadi, S.; Mohammadi, M.; Lorenzo, J.M.; Hamishehkar, H. Active Gelatin/Cress Seed Gum-Based Films Reinforced with Chitosan Nanoparticles Encapsulating Pomegranate Peel Extract: Preparation and Characterization. Food Hydrocoll. 2022, 129, 107620. [Google Scholar] [CrossRef]
- Hedayati, S.; Jafari, S.M.; Babajafari, S.; Niakousari, M.; Mazloomi, S.M. Different Food Hydrocolloids and Biopolymers as Egg Replacers: A Review of Their Influences on the Batter and Cake Quality. Food Hydrocoll. 2022, 128, 107611. [Google Scholar] [CrossRef]
- Phillips, G.O.; Williams, P.A. Handbook of Hydrocolloids, 2nd ed.; CRC Press: Boca Raton, FL, USA; Woodhead Publishing: Sawston, UK, 2009; Available online: https://books.google.com.co/books?hl=es&lr=&id=3k-kAgAAQBAJ&oi=fnd&pg=PP1&ots=e6B4t4PrMi&sig=CI2MxIct9gMk50mw5T6BeAt6gho&redir_esc=y#v=onepage&q&f=false (accessed on 5 April 2021).
- Tapia-Hernández, J.A.; Del-Toro-Sánchez, C.L.; Cinco-Moroyoqui, F.J.; Juárez-Onofre, J.E.; Ruiz-Cruz, S.; Carvajal-Millan, E.; López-Ahumada, G.A.; Castro-Enriquez, D.D.; Barreras-Urbina, C.G.; Rodríguez-Felix, F. Prolamins from Cereal By-Products: Classification, Extraction, Characterization and Its Applications in Micro- and Nanofabrication. Trends Food Sci. Technol. 2019, 90, 111–132. [Google Scholar] [CrossRef]
- Fathi, M.; Donsi, F.; McClements, D.J. Protein-Based Delivery Systems for the Nanoencapsulation of Food Ingredients. Compr. Rev. Food Sci. Food Saf. 2018, 17, 920–936. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.Q.; Hu, X.; Wang, C.; Ai, L. Polysaccharides: Structure and solubility. In Colubility of Polysaccharides; IntechOpen: London, UK, 2017; pp. 1–17. [Google Scholar]
- Wu, H.; Ge, J.; Yang, L.; Zhang, T.; Guo, H.; Li, L. Effect of Entanglement on Rheological and Ultimate Properties of Inorganic HPAM Gels. J. Mol. Liq. 2022, 351, 118669. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, Q.; Fan, D.; Xiao, J.; Zhao, Y.; Cheng, K.W.; Wang, M. Novel Roles of Hydrocolloids in Foods: Inhibition of Toxic Maillard Reaction Products Formation and Attenuation of Their Harmful Effects. Trends Food Sci. Technol. 2021, 111, 706–715. [Google Scholar] [CrossRef]
- Mert, B.; Vilgis, T.A. Hydrocolloid Coated Oleosomes for Development of Oleogels. Food Hydrocoll. 2021, 119, 106832. [Google Scholar] [CrossRef]
- Quintana, S.E.; Salas, S.; García-Zapateiro, L.A. Bioactive Compounds of Mango (Mangifera indica): A Review of Extraction Technologies and Chemical Constituents. J. Sci. Food Agric. 2021, 101, 6186–6192. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.X.; Fu, S.F.; Bi, X.F.; Chen, F.; Liao, X.J.; Hu, X.S.; Wu, J.H. Physico-Chemical and Antioxidant Properties of Four Mango (Mangifera indica L.) Cultivars in China. Food Chem. 2013, 138, 396–405. [Google Scholar] [CrossRef]
- Léchaudel, M.; Joas, J. Quality and Maturation of Mango Fruits of Cv. Cogshall in Relation to Harvest Date and Carbon Supply. Aust. J. Agric. Res. 2006, 57, 419–426. [Google Scholar] [CrossRef]
- Nunes, M.C.N.; Emond, J.P.; Brecht, J.K.; Dea, S.; Proulx, E. Quality Curves for Mango Fruit (Cv. Tommy Atkins and Palmer) Stored at Chilling and Nonchilling Temperatures. J. Food Qual. 2007, 30, 104–120. [Google Scholar] [CrossRef]
- Hoque, M.; Chowhan, S.; Kamruzzaman, M. Physiological Changes and Shelf Life of Mango (Mangifera indica L.) Influenced by Post Harvest Treatments. SAARC J. Agric. 2018, 15, 219–226. [Google Scholar] [CrossRef]
- Sogi, D.S.; Siddiq, M.; Greiby, I.; Dolan, K.D. Total Phenolics, Antioxidant Activity, and Functional Properties of “Tommy Atkins” Mango Peel and Kernel as Affected by Drying Methods. Food Chem. 2013, 141, 2649–2655. [Google Scholar] [CrossRef]
- Abdul Aziz, N.A.; Wong, L.M.; Bhat, R.; Cheng, L.H. Evaluation of Processed Green and Ripe Mango Peel and Pulp Flours (Mangifera indica Var. Chokanan) in Terms of Chemical Composition, Antioxidant Compounds and Functional Properties. J. Sci. Food Agric. 2012, 92, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Prasada Rao, U.J.S. Protection against Hydrogen Peroxide Induced Oxidative Damage in Rat Erythrocytes by Mangifera indica L. Peel Extract. Food Chem. Toxicol. 2008, 46, 303–309. [Google Scholar] [CrossRef]
- Ajila, C.M.; Jaganmohan Rao, L.; Prasada Rao, U.J.S. Characterization of Bioactive Compounds from Raw and Ripe Mangifera indica L. Peel Extracts. Food Chem. Toxicol. 2010, 48, 3406–3411. [Google Scholar] [CrossRef] [PubMed]
- Balke, D.T.; Diosady, L.L. Rapid Aqueous Extraction of Mucilage from Whole White Mustard Seed. Food Res. Int. 2000, 33, 347–356. [Google Scholar] [CrossRef]
- Estévez, A.M.; Sáenz, C.; Hurtado, M.L.; Escobar, B.; Espinoza, S.; Suárez, C. Extraction Methods and Some Physical Properties of Mesquite (Prosopis chilensis (Mol) Stuntz) Seed Gum. J. Sci. Food Agric. 2004, 84, 1487–1492. [Google Scholar] [CrossRef]
- Somboonpanyakul, P.; Wang, Q.; Cui, W.; Barbut, S.; Jantawat, P. Malva Nut Gum. (Part I): Extraction and Physicochemical Characterization. Carbohydr. Polym. 2006, 64, 247–253. [Google Scholar] [CrossRef]
- Kalapathy, U.; Proctor, A. Effect of Acid Extraction and Alcohol Precipitation Conditions on the Yield and Purity of Soy Hull Pectin. Food Chem. 2001, 73, 393–396. [Google Scholar] [CrossRef]
- Colodel, C.; de Oliveira Petkowicz, C.L. Acid Extraction and Physicochemical Characterization of Pectin from Cubiu (Solanum sessiliflorum D.) Fruit Peel. Food Hydrocoll. 2019, 86, 193–200. [Google Scholar] [CrossRef]
- Keisandokht, S.; Haddad, N.; Gariepy, Y.; Orsat, V. Screening the Microwave-Assisted Extraction of Hydrocolloids from Ocimum basilicum L. Seeds as a Novel Extraction Technique Compared with Conventional Heating-Stirring Extraction. Food Hydrocoll. 2018, 74, 11–22. [Google Scholar] [CrossRef]
- Chen, X.; Han, Y.; Meng, H.; Li, W.; Li, Q.; Luo, Y.; Wang, C.; Xie, J.; Wu, L.; Zhang, X.; et al. Characteristics of the Emulsion Stabilized by Polysaccharide Conjugates Alkali-Extracted from Green Tea Residue and Its Protective Effect on Catechins. Ind. Crops Prod. 2019, 140, 111611. [Google Scholar] [CrossRef]
- Arredondo Peñaranda, A.; Londoño López, M.E. Hidrogeles. Potenciales Biomateriales para la Liberación Controlada de Medicamentos [Hydrogels. Potentials Biomaterials for Controlled Drug Delivery]. Rev. Ing. Biomédica 2009, 3, 83–94. [Google Scholar]
- Gannasin, S.P.; Adzahan, N.M.; Hamzah, M.Y.; Mustafa, S.; Muhammad, K. Physicochemical Properties of Tamarillo (Solanum betaceum Cav.) Hydrocolloid Fractions. Food Chem. 2015, 182, 292–301. [Google Scholar] [CrossRef]
- Bekele, M.; Satheesh, N.; Sadik, J.A. Screening of Ethiopian Mango Cultivars for Suitability for Preparing Jam and Determination of Pectin, Sugar, and Acid Effects on Physico-Chemical and Sensory Properties of Mango Jam. Sci. Afr. 2020, 7, e00277. [Google Scholar] [CrossRef]
- Cao, X.; Li, N.; Qi, G.; Sun, X.S.; Bean, S.R.; Tilley, M.; Aramouni, F.M.; Wang, D. Optimization of Camelina Gum Isolation from Bran and Protein Extraction Using Decortication. J. Agric. Food Res. 2021, 6. [Google Scholar] [CrossRef]
- Renard, D.; Davantès, A.; D’orlando, A.; Cahier, K.; Molinari, M.; Nigen, M.; Chalier, P.; Sanchez, C. Adsorption of Arabinogalactan-Proteins from Acacia Gums (Senegal and Seyal) and Its Molecular Fractions onto Latex Particles. Food Hydrocolloids 2022, 125. [Google Scholar] [CrossRef]
- Ma, K.K.; Greis, M.; Lu, J.; Nolden, A.A.; Mcclements, D.J.; Kinchla, A.J.; Ma, K.K.; Greis, M.; Lu, J.; Nolden, A.A.; et al. Citation: Functional Performance of Plant Proteins. Foods 2022, 11, 594. [Google Scholar] [CrossRef]
- Kuhn, K.R.; Cavallieri, Â.L.F.; da Cunha, R.L. Cold-Set Whey Protein–Flaxseed Gum Gels Induced by Mono or Divalent Salt Addition. Food Hydrocolloids 2011, 25, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Escobar, B.; Romeo, M.; Baeza, G.; Soto, X.; Vásquez, M. Caracterización y Composición Química del Fruto de Algarrobo (Prosopis chilensis (Mol.) Stuntz). Rev. Chil. Nutr. 1987, 15, 113–116. [Google Scholar]
- Ibañez, M.C.; Ferrero, C. Extraction and Characterization of the Hydrocolloid from Prosopis Flexuosa DC Seeds. Food Res. Int. 2003, 36, 455–460. [Google Scholar] [CrossRef]
- Torres-León, C.; Rojas, R.; Contreras-Esquivel, J.C.; Serna-Cock, L.; Belmares-Cerda, R.E.; Aguilar, C.N. Mango Seed: Functional and Nutritional Properties. Trends Food Sci. Technol. 2016, 55, 109–117. [Google Scholar] [CrossRef]
- Torres-León, C.; Vicente, A.A.; Flores-López, M.L.; Rojas, R.; Serna-Cock, L.; Alvarez-Pérez, O.B.; Aguilar, C.N. Edible Films and Coatings Based on Mango (Var. Ataulfo) by-Products to Improve Gas Transfer Rate of Peach. LWT 2018, 97, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Karazhiyan, H.; Razavi, S.M.A.; Phillips, G.O. Extraction Optimization of a Hydrocolloid Extract from Cress Seed (Lepidium Sativum) Using Response Surface Methodology. Food Hydrocoll. 2011, 25, 915–920. [Google Scholar] [CrossRef]
- Lundin, L.; Stenlöf, B.; Hermansson, A.M. NIR Spectra in Relation to Viscoelastic Properties of Mixtures of Na-κ-Carrageenan, Locust Bean Gum and Casein. Food Hydrocoll. 1998, 12, 189–193. [Google Scholar] [CrossRef]
- De Souza, F.S.; de Mello Ferreira, I.L.; da Silva Costa, M.A.; da Costa, M.P.M.; da Silva, G.M. Effect of PH Variation and Crosslinker Absence on the Gelling Mechanism of High Acyl Gellan: Morphological, Thermal and Mechanical Approaches. Carbohydr. Polym. 2021, 251, 7002. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, J.; Swanson, B.G.; Cavinato, A.G.; Lin, M.; Rasco, B.A. Near Infrared Spectroscopy: A New Tool for Studying Physical and Chemical Properties of Polysaccharide Gels. Carbohydr. Polym. 2003, 53, 281–288. [Google Scholar] [CrossRef]
- Huang, Y.; Cavinato, A.G.; Tang, J.; Swanson, B.G.; Lin, M.; Rasco, B.A. Characterization of Sol–Gel Transitions of Food Hydrocolloids with near Infra-Red Spectroscopy. LWT-Food Sci. Technol. 2007, 40, 1018–1026. [Google Scholar] [CrossRef]
- Cozzolino, D.; Fassio, A.; Fernández, E. Uso de la espectroscopía de reflectancia en el infrarrojo cercano para el análisis de calidad de ensilaje de maíz. Agric. Técnica 2003, 63, 387–393. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Budić-Leto, I.; Gajdoš Kljusurić, J.; Zdunić, G.; Tomić-Potrebuješ, I.; Banović, M.; Kurtanjek, Ž.; Lovrić, T. Usefulness of near Infrared Spectroscopy and Chemometrics in Screening of the Quality of Dessert Wine Prošek. Croat. J. Food Sci. Technol. 2011, 3, 9–15. [Google Scholar]
- Cozzolino, D.; Cynkar, W.U.; Shah, N.; Smith, P. Multivariate Data Analysis Applied to Spectroscopy: Potential Application to Juice and Fruit Quality. Food Res. Int. 2011, 44, 1888–1896. [Google Scholar] [CrossRef]
- del Pilar Sanchez-Camargo, A.; Gutierrez, L.F.; Vargas, S.M.; Martinez-Correa, H.A.; Parada-Alfonso, F.; Narvaez-Cuenca, C.E. Valorisation of Mango Peel: Proximate Composition, Supercritical Fluid Extraction of Carotenoids, and Application as an Antioxidant Additive for an Edible Oil. J. Supercrit. Fluids 2019, 152, 104574. [Google Scholar] [CrossRef]
- Dorta, E.; Lobo, M.G.; González, M. Using Drying Treatments to Stabilise Mango Peel and Seed: Effect on Antioxidant Activity. LWT-Food Sci. Technol. 2012, 45, 261–268. [Google Scholar] [CrossRef]
- Lima Dantas, A.; De Melo Silva, S.; Lima Dantas, R.; Pereira, W.E.; Lima, R.P.; Maria, R.; Mendonça, N.; Santos, D. Influence of Combined Sources of Nitrogen Fertilization on Quality of Cv. Vitria Pineapple. Afr. J. Agric. Res. 2015, 10, 3814–3824. [Google Scholar] [CrossRef] [Green Version]
- Selani, M.M.; Bianchini, A.; Ratnayake, W.S.; Flores, R.A.; Massarioli, A.P.; de Alencar, S.M.; Canniatti Brazaca, S.G. Physicochemical, Functional and Antioxidant Properties of Tropical Fruits Co-Products. Plant Foods Hum. Nutr. 2016, 71, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Lina, L.; Giraldo Vásquez, M.; Luz, C.; Aristizabal, S.R. Evaluación de La Actividad Antioxidante de Extractos de Palicourea Guianensis (Rubiaceae) Evaluation of Antioxidant Activity of Palicourea Guianensis (Rubiaceae) Extracts. Rev. Cuba Farm. 2013, 47, 483–491. [Google Scholar]
- Avello Lorca, M.; Valladares Acosta, R.; Ordóñez Belmar, J.L. Capacidad Antioxidante de Aristotelia chilensis (Molina) Stuntz. Rev. Cuba. Plantas Med. 2008, 13, 4. [Google Scholar]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda, C.T.; Zapata, J.E.; Sepúlveda, C.T.; Zapata, J.E. Efecto de La Temperatura, El PH y El Contenido En Sólidos Sobre Los Compuestos Fenólicos y La Actividad Antioxidante Del Extracto de Bixa orellana L. Inf. Tecnológica 2019, 30, 57–66. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, A.S.B.; da Silva, M.C.A.; Lima, R.P.; de Albuquerque Meireles, B.R.L.; Cordeiro, A.T.M.; da Silva Santos, E.F.; de Melo Silva, S. Phenolic Compounds and Antioxidant Activity as Discriminating Markers and Adding Value of Mango Varieties. Sci. Hortic. 2021, 287, 110259. [Google Scholar] [CrossRef]
- Duenas, M.; Garciá-Estévez, I. Agricultural and Food Waste: Analysis, Characterization and Extraction of Bioactive Compounds and Their Possible Utilization. Foods 2020, 9, 817. [Google Scholar] [CrossRef]
- Leichtweis, M.G.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R.; Pereira, C.; Barros, L. Sustainable Recovery of Preservative and Bioactive Compounds from Food Industry Bioresidues. Antioxidants 2021, 10, 1827. [Google Scholar] [CrossRef]
- Martinez-Fernandez, J.S.; Seker, A.; Davaritouchaee, M.; Gu, X.; Chen, S. Recovering Valuable Bioactive Compounds from Potato Peels with Sequential Hydrothermal Extraction. Waste Biomass Valorization 2021, 12, 1465–1481. [Google Scholar] [CrossRef]
- Soquetta, M.B.; Stefanello, F.S.; Huerta, K.D.M.; Monteiro, S.S.; Da Rosa, C.S.; Terra, N.N. Characterization of Physiochemical and Microbiological Properties, and Bioactive Compounds, of Flour Made from the Skin and Bagasse of Kiwi Fruit (Actinidia deliciosa). Food Chem. 2016, 199, 471–478. [Google Scholar] [CrossRef]
- de la Luz Cadiz-Gurrea, M.; del Carmen Villegas-Aguilar, M.; Leyva-Jiménez, F.J.; Pimentel-Moral, S.; Fernandez-Ochoa, A.; Alañón, M.E.; Segura-Carretero, A. Revalorization of Bioactive Compounds from Tropical Fruit By-Products and Industrial Applications by Means of Sustainable Approaches. Food Res. Int. 2020, 138, 109786. [Google Scholar] [CrossRef]
- Galla, N.R.; Dubasi, G.R. Chemical and Functional Characterization of Gum Karaya (Sterculia urens L.) Seed Meal. Food Hydrocoll. 2010, 24, 479–485. [Google Scholar] [CrossRef]
- Simas-Tosin, F.F.; Barraza, R.R.; Petkowicz, C.L.O.; Silveira, J.L.M.; Sassaki, G.L.; Santos, E.M.R.; Gorin, P.A.J.; Iacomini, M. Rheological and Structural Characteristics of Peach Tree Gum Exudate. Food Hydrocoll. 2010, 24, 486–493. [Google Scholar] [CrossRef]
- Sciarini, L.S.; Maldonado, F.; Ribotta, P.D.; Pérez, G.T.; León, A.E. Chemical Composition and Functional Properties of Gleditsia Triacanthos Gum. Food Hydrocoll. 2009, 23, 306–313. [Google Scholar] [CrossRef]
- Salahi, M.; Razavi, S.M.A.; Hasanvand, E. Physicochemical, Rheological and Functional Properties of a Novel Gum from Eremurus Luteus Root. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100296. [Google Scholar] [CrossRef]
- Bai, L.; Zhu, P.; Wang, W.; Wang, M. The Influence of Extraction PH on the Chemical Compositions, Macromolecular Characteristics, and Rheological Properties of Polysaccharide: The Case of Okra Polysaccharide. Food Hydrocoll. 2020, 102, 105586. [Google Scholar] [CrossRef]
- Amid, B.T.; Mirhosseini, H. Optimisation of Aqueous Extraction of Gum from Durian (Durio zibethinus) Seed: A Potential, Low Cost Source of Hydrocolloid. Food Chem. 2012, 132, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Jian, H.L.; Lin, X.J.; Zhang, W.M.; Sun, D.F.; Jiang, J.X. Physico-Chemical Characterization of the Temperature Dependent Hydration Kinetics of Gleditsia Sinensis Gum. Int. J. Biol. Macromol. 2013, 62, 596–602. [Google Scholar] [CrossRef]
- Löfgren, C.; Walkenström, P.; Hermansson, A.M. Microstructure and Rheological Behavior of Pure and Mixed Pectin Gels. Biomacromolecules 2002, 3, 1144–1153. [Google Scholar] [CrossRef]
- Quintana-Martínez, S.E.; Fuentes-Torregroza, E.E.; García-Zapateiro, L.A. Food Hydrocolloids from Butternut Squash (Cucurbita moschata) Peel: Rheological Properties and Their Use in Carica Papaya Jam. ACS Omega 2021, 6, 12114–12123. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemist). Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Shittu, T.A.; Aminu, R.A.; Abulude, E.O. Functional Effects of Xanthan Gum on Composite Cassava-Wheat Dough and Bread. Food Hydrocoll. 2009, 23, 2254–2260. [Google Scholar] [CrossRef]
- Lastra-Ripoll, S.E.; Quintan-Martínez, S.E.; García-Zapateiro, L.A. Rheological and Microstructural Properties of Xanthan Gum-Based Coating Solutions Enriched with Phenolic Mango (Mangifera indica) Peel Extracts. ACS Omega 2021, 6, 16119–16128. [Google Scholar] [CrossRef] [PubMed]
- Alimi, B.A.; Shittu, T.A.; Sanni, L.O.; Arowolo, T.A. Effect of Pre-Drying and Hydrocolloid Type on Colour and Textural Properties of Coated Fried Yam Chips. Niger. Food J. 2013, 31, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kalegowda, P.; Chauhan, A.S.; Nanjaraj Urs, S.M. Opuntia Dillenii (Ker-Gawl) Haw Cladode Mucilage: Physico-Chemical, Rheological and Functional Behavior. Carbohydr. Polym. 2017, 157, 1057–1064. [Google Scholar] [CrossRef]
- Archana, G.; Sabina, K.; Babuskin, S.; Radhakrishnan, K.; Fayidh, M.A.; Saravana, P.A.; Sivarajan, M.; Sukumar, M. Preparation and Characterization of Mucilage Polysaccharide for Biomedical Applications. Carbohydr. Polym. 2013, 98, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Ghribi, A.M.; Gafsi, I.M.; Blecker, C.; Danthine, S.; Attia, H.; Besbes, S. Effect of Drying Methods on Physico-Chemical and Functional Properties of Chickpea Protein Concentrates. J. Food Eng. 2015, 165, 179–188. [Google Scholar] [CrossRef]
Sample Code | pH * | SS * Brix | Acidity % | Moisture % | Ash % | Lipids % | Carbohydrate % | Proteins % |
---|---|---|---|---|---|---|---|---|
HP3 | 3.51 ac | 10.56 ab | 0.17 ± 0.78 c | 75.38 ± 0.98 bc | 1.61 ± 0.54 abd | 0.63 ± 0.12 ac | 21.59 ± 2.11 ab | 0.33 ± 0.03 abc |
HP7 | 6.73 abc | 10.45 abc | 0.06 ± 0.99 ac | 74.25 ± 1.43 bd | 0.48 ± 0.36 ac | 0.65 ± 1.04 abc | 23.52 ± 1.03 abc | 0.38 ± 0.02 ac |
HP10 | 8.15 bc | 10.58 abc | 0.01 ± 0.41 abc | 72.10 ± 2.35 abc | 0.94 ± 0.63 abe | 0.85 ± 0.50 abe | 23.06 ± 1.70 ac | 0.42 ± 0.09 bc |
HE3 | 4.54 adc | 4.21 acd | 0.17 ± 0.48 adc | 75.32 ± 1.21 ad | 1.30 ± 0.61 abc | 0.93 ± 0.01 abc | 21.20 ± 1.20 abc | 0.35 ± 0.03 abc |
HE7 | 6.78 ab | 4.35 bc | 0.08 ± 0.05 abd | 74.13± 0.95 ab | 1.52 ± 0.48 ab | 0.87 ± 0.25 abc | 22.45 ± 1.08 ac | 0.41 ± 0.08 abe |
HE10 | 8.72 ad | 4.65 ac | 0.01 ± 0.06 ab | 74.52 ± 1.43 acd | 1.10 ± 0.71 abc | 0.78 ± 0.31 ab | 22.12 ± 0.54 bc | 0.37 ± 0.03 abe |
HS3 | 4.25 abc | 2.56 abc | 0.17 ± 0.58 bc | 65.74 ± 0.23 bd | 1.47 ± 0.46 abd | 9.86 ± 1.35 ac | 2.06 ± 0.30 abc | 20.24 ± 0.96 acd |
HS7 | 6.54 bc | 2.34 ab | 0.05 ± 0.05 abc | 63.07 ± 1.44 ad | 1.32 ± 0.85 ab | 10.32 ± 1.73 ad | 2.32 ± 0.40 ac | 20.93 ± 1.21 ac |
HS10 | 8.21 abc | 3.12 abd | 0.02 ± 0.11 cd | 62.96 ± 0.83 ab | 1.65 ± 0.53 ac | 11.15 ± 0.98 ad | 2.63 ± 0.90 abc | 20.36 ± 0.67 dc |
Sample Code | L* | WI | ΔE |
---|---|---|---|
HP3 | 94.46 ± 0.56 c | 94.15 ± 0.45 a | 94.48 ± 0.76 cb |
HP7 | 97.07 ± 0.18 bc | 95.78 ± 0.29 cb | 97.11 ± 0.64 ac |
HP10 | 88.20 ± 0.58 b | 87.75 ± 0.65 abc | 88.7 ± 0.56 ab |
HS3 | 67.47 ± 1.14 abc | 67.05 ± 0.90 b | 67.67 ± 0.34 a |
HS7 | 57.96± 0.85 cb | 57.78± 0.81 bc | 58.09 ± 0.72 a |
HS10 | 56.87± 0.45 abc | 56.62 ± 0.36 c | 57.07 ± 0.44 b |
HE3 | 98.05 ± 0.14 bc | 80.49 ± 0.42 bc | 99.95 ± 0.14 c |
HE7 | 67.38 ± 1.45 a | 66.22 ± 0.35 ac | 67.98 ± 0.42 ac |
HE10 | 67.45 ± 1.12 abc | 67.23 ± 0.85 cb | 67.57 ± 0.04 b |
Sample Code | TPC mg GAE/g | IC50 | TEAC |
---|---|---|---|
HP3 | 31.69 ± 4.50 bc | 49.98 ± 0.22 a | 152.38 ± 0.66 c |
HP7 | 25.17 ± 0.18 abc | 46.36 ± 0.07 d | 164.29 ± 0.24 a |
HP10 | 32.13 ± 2.17 ab | 41.67 ± 0.05 abc | 185.03 ± 0.23 a |
HS3 | 47.98 ± 2.17 abc | 38.84 ± 0.19 d | 196.44 ± 0.95 a |
HS7 | 46.61 ± 0.85 c | 36.77 ± 0.78 abc | 198.73 ± 0.72 a |
HS10 | 21.61 ± 0.39 abc | 43.83 ± 0.34 d | 193.82 ± 1.34 a |
HE3 | 37.34 ± 1.16 abc | 38.23 ± 0.12 d | 198.85 ± 0.76 a |
HE7 | 51.77 ± 2.48 a | 37.25 ± 0.93 abc | 197.55 ± 0.02 a |
HE10 | 28.68 ± 4.50 abc | 38.16 ± 0.07 | 196.98 ± 0.37 c |
Sample Code | Parts of Mango | pH | Temperature °C | Time Hours |
---|---|---|---|---|
HP3 | Pulp | 3 | 80 | 4 |
HP7 | Pulp | 7 | 80 | 4 |
HP10 | Pulp | 10 | 80 | 4 |
HE3 | Peel | 3 | 80 | 4 |
HE7 | Peel | 7 | 80 | 4 |
HE10 | Peel | 10 | 80 | 4 |
HS3 | Seed | 3 | 80 | 4 |
HS7 | Seed | 7 | 80 | 4 |
H10 | Seed | 10 | 80 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsiglia-Fuentes, R.; Quintana, S.E.; García Zapateiro, L.A. Novel Hydrocolloids Obtained from Mango (Mangifera indica) var. Hilaza: Chemical, Physicochemical, Techno-Functional, and Structural Characteristics. Gels 2022, 8, 354. https://doi.org/10.3390/gels8060354
Marsiglia-Fuentes R, Quintana SE, García Zapateiro LA. Novel Hydrocolloids Obtained from Mango (Mangifera indica) var. Hilaza: Chemical, Physicochemical, Techno-Functional, and Structural Characteristics. Gels. 2022; 8(6):354. https://doi.org/10.3390/gels8060354
Chicago/Turabian StyleMarsiglia-Fuentes, Ronald, Somaris E. Quintana, and Luis A. García Zapateiro. 2022. "Novel Hydrocolloids Obtained from Mango (Mangifera indica) var. Hilaza: Chemical, Physicochemical, Techno-Functional, and Structural Characteristics" Gels 8, no. 6: 354. https://doi.org/10.3390/gels8060354
APA StyleMarsiglia-Fuentes, R., Quintana, S. E., & García Zapateiro, L. A. (2022). Novel Hydrocolloids Obtained from Mango (Mangifera indica) var. Hilaza: Chemical, Physicochemical, Techno-Functional, and Structural Characteristics. Gels, 8(6), 354. https://doi.org/10.3390/gels8060354