Poloxamer-Based Scaffolds for Tissue Engineering Applications: A Review
Abstract
:1. Introduction
2. Physical and Chemical Properties
3. Poloxamer Scaffolds’ Application in Tissue Engineering
3.1. Vascular
3.1.1. Vascular Regeneration
3.1.2. Wireless Suture
3.1.3. Artificial Vessels
3.1.4. Temporary Vascular Occlusion
3.2. Bone
3.3. Cartilage
3.4. Nervous System
3.5. Skin
3.6. Organ
3.6.1. Uterus
3.6.2. Lung
3.6.3. Brain
3.7. Others
3.7.1. Adipose Tissue
3.7.2. Ligament
3.7.3. Skeletal Muscle
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rivron, N.C.; Liu, J.J.; Rouwkema, J.; de Boer, J.; van Blitterswijk, C.A. Engineering vascularised tissues in vitro. Eur. Cell Mater 2008, 15, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.; Vacanti, J.P. Tissue Engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladewig, K.; Abberton, K.; O’Connor, A.J. Designing In Vivo Bioreactors for Soft Tissue Engineering. J. Biomater. Tissue Eng. 2012, 2, 1–13. [Google Scholar] [CrossRef]
- Michael, L.; Kyongbum, L.; Aurelie, E.; Kaplan, D.L. Vascularization Strategies for Tissue Engineering. Tissue Eng. Part B 2009, 15, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Emara, A.; Shah, R. Recent update on craniofacial tissue engineering. J. Tissue Eng. 2021, 12, 20417314211003735. [Google Scholar] [CrossRef] [PubMed]
- Zarrintaj, P.; Saeb, M.R.; Ramakrishna, S.; Mozafari, M. Biomaterials selection for neuroprosthetics. Curr. Opin. Biomed. Eng. 2018, 6, 99–109. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Ramsey, J.D.; Samadi, A.; Atoufi, Z.; Yazdi, M.K.; Ganjali, M.R.; Amirabad, L.M.; Zangene, E.; Farokhi, M.; Formela, K.; et al. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomater. 2020, 110, 37–67. [Google Scholar] [CrossRef]
- Lutz, J.-F.; Lehn, J.-M.; Meijer, E.W.; Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 2016, 1, 16024. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Das, M.; Jain, S. In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin. Drug Deliv. 2012, 4, 383–402. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wettig, S.D.; Verrall, R.E. Isothermal titration calorimetry and dynamic light scattering studies of interactions between gemini surfactants of different structure and Pluronic block copolymers. J. Colloid Interface Sci. 2005, 282, 466–477. [Google Scholar] [CrossRef]
- Russo, E.; Villa, C. Poloxamer Hydrogels for Biomedical Applications. Pharmaceutics 2019, 11, 671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shubhra, Q.T.H.; Tóth, J.; Gyenis, J.; Feczkó, T. Poloxamers for Surface Modification of Hydrophobic Drug Carriers and Their Effects on Drug Delivery. Polym. Rev. 2014, 54, 112–138. [Google Scholar] [CrossRef]
- Giuliano, E.; Paolino, D.; Fresta, M.; Cosco, D. Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview. Pharmaceutics 2018, 10, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Lee, J.H.; Meng, M.; Cui, N.; Dai, C.Y.; Jia, Q.; Lee, E.S.; Jiang, H.B. An Overview on Thermosensitive Oral Gel Based on Poloxamer 407. Materials 2021, 14, 4522. [Google Scholar] [CrossRef]
- Bodratti, A.M.; Alexandridis, P. Formulation of Poloxamers for Drug Delivery. J. Funct. Biomater. 2018, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Gittens, S.A.; Uludag, H. Growth Factor Delivery for Bone Tissue Engineering. J. Drug. Target. 2001, 9, 407–429. [Google Scholar] [CrossRef]
- Hu, X.; Li, R.; Wu, Y.; Li, Y.; Zhong, X.; Zhang, G.; Kang, Y.; Liu, S.; Xie, L.; Ye, J.; et al. Thermosensitive heparin-poloxamer hydrogel encapsulated bFGF and NGF to treat spinal cord injury. J. Cell Mol. Med. 2020, 24, 8166–8178. [Google Scholar] [CrossRef]
- The World Federation of Neurology Research Group on Motor Neuron Diseases. Full Issue PDF, Volume 18, Issue S1. Amyotrop. Lateral Scl. Front. Degen. 2017, 18, 1–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Zhou, R.; Li, L.; Li, B.; Zhang, X.; Su, J. Mechanical, rheological and release behaviors of a poloxamer 407/poloxamer 188/carbopol 940 thermosensitive composite hydrogel. Molecules 2013, 18, 12415–12425. [Google Scholar] [CrossRef]
- Stevens, M.M. Biomaterials for bone tissue engineering. Mater. Today 2008, 11, 18–25. [Google Scholar] [CrossRef]
- Shevchenko, R.V.; James, S.L.; James, S.E. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J. R. Soc. Interface 2010, 7, 229–258. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.H.; Kim, J.H.; Song, K.S.; Jeon, B.H.; Yoon, J.H.; Seo, T.B.; Namgung, U.; Lee, I.W.; Lee, J.H. Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials 2008, 29, 1601–1609. [Google Scholar] [CrossRef]
- Gopinathan, J.; Noh, I. Recent trends in bioinks for 3D printing. Biomate. Res. 2018, 22, 11. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, Y.; Zou, Y.; Huang, W.; Zhu, L.; Liu, F.; Wang, D.; Guo, K.; Hu, J.; Chen, J.; et al. Heparin-poloxamer hydrogel-encapsulated rhFGF21 enhances wound healing in diabetic mice. FASEB J. 2019, 33, 9858–9870. [Google Scholar] [CrossRef]
- Kim, J.R.; Oh, S.H.; Kwon, G.B.; Namgung, U.; Song, K.S.; Jeon, B.H.; Lee, J.H. Acceleration of peripheral nerve regeneration through asymmetrically porous nerve guide conduit applied with biological/physical stimulation. Tissue Eng. Part A 2013, 19, 2674–2685. [Google Scholar] [CrossRef] [Green Version]
- Gioffredi, E.; Boffito, M.; Calzone, S.; Giannitelli, S.M.; Rainer, A.; Trombetta, M.; Mozetic, P.; Chiono, V. Pluronic F127 Hydrogel Characterization and Biofabrication in Cellularized Constructs for Tissue Engineering Applications. Procedia CIRP 2016, 49, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Muller, M.; Becher, J.; Schnabelrauch, M.; Zenobi-Wong, M. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 2015, 7, 035006. [Google Scholar] [CrossRef]
- Turnbull, G.; Clarke, J.; Picard, F.; Riches, P.P.; Jia, L.; Han, F.; Li, B.; Shu, W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 2017, 3, 278–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billiet, T.; Gevaert, E.; De Schryver, T.; Cornelissen, M.; Dubruel, P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 2014, 35, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Imani, R.; Shahriyar, H.E.; Sharifi, A.M.; Rahnama Moshtaq, P.; Baheiraei, N.; Fakhrzadeh, F. Evaluation of novel “biopaper” for cell and organ printing application: An in vitro study. J. Diabetes Metab. Disord. 2011, 10, 19. [Google Scholar]
- Zarrintaj, P.; Ahmadi, Z.; Reza Saeb, M.; Mozafari, M. Poloxamer-based stimuli-responsive biomaterials. Mater. Today Proc. 2018, 5, 15516–15523. [Google Scholar] [CrossRef]
- Dehghani, F.; Fathi, A. Challenges for Cartilage Regeneration. In Biomaterials for Implants and Scaffolds; Springer Series in Biomaterials Science and Engineering: Berlin, Germany, 2017; pp. 389–466. [Google Scholar]
- Lin, Y.; Xiao, W.; Liu, X.; Bal, B.S.; Bonewald, L.F.; Rahaman, M.N. Long-term bone regeneration, mineralization and angiogenesis in rat calvarial defects implanted with strong porous bioactive glass (13–93) scaffolds. J. Non-Cryst. Solids 2016, 432, 120–129. [Google Scholar] [CrossRef]
- Suntornnond, R.; An, J.; Chua, C.K. Bioprinting of Thermoresponsive Hydrogels for Next Generation Tissue Engineering: A Review. Macromol. Mater. Eng. 2017, 302, 1600266. [Google Scholar] [CrossRef]
- Cabana, A.; Ait-Kadi, A.; Juhasz, J. Study of the Gelation Process of Polyethylene Oxidea Oxideb–Polyethylene Oxidea Copolymer (Poloxamer 407) Aqueous Solutions. J. Colloid Interface Sci. 1997, 190, 307–312. [Google Scholar] [CrossRef]
- Kurahashi, M.; Kanamori, K.; Takeda, K.; Kaji, H.; Nakanishi, K. Role of block copolymer surfactant on the pore formation in methylsilsesquioxane aerogel systems. RSC Adv. 2012, 2, 7166–7173. [Google Scholar] [CrossRef] [Green Version]
- Alexandridis, P.; Hatton, T.A. Poly(ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling. Colloids Surf. A Physicochem. Eng. Asp. 1995, 96, 1–46. [Google Scholar] [CrossRef]
- Fakhari, A.; Corcoran, M.; Schwarz, A. Thermogelling properties of purified poloxamer 407. Heliyon 2017, 3, e00390. [Google Scholar] [CrossRef]
- Abdeltawab, H.; Svirskis, D.; Sharma, M. Formulation strategies to modulate drug release from poloxamer based in situ gelling systems. Expert Opin. Drug. Deliv. 2020, 17, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.; Nagesh, P.K.B.; Kumar, S.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Pluronic Nanotechnology for Overcoming Drug Resistance. In Bioactivity of Engineered Nanoparticles; Nanomedicine and Nanotoxicology: Singapore, 2017; pp. 207–237. [Google Scholar]
- Dos Santos, A.M.; Carvalho, S.G.; Araujo, V.H.S.; Carvalho, G.C.; Gremiao, M.P.D.; Chorilli, M. Recent advances in hydrogels as strategy for drug delivery intended to vaginal infections. Int. J. Pharm. 2020, 590, 119867. [Google Scholar] [CrossRef] [PubMed]
- Gratieri, T.; Gelfuso, G.M.; Rocha, E.M.; Sarmento, V.H.; de Freitas, O.; Lopez, R.F. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur. J. Pharm. Biopharm. 2010, 75, 186–193. [Google Scholar] [CrossRef]
- Curtis, D.P.; Paul, J.G.; Ganote, C.E. The Effect of Pluronic F-38(Poloxamer 108)Administered Intravenously to rats. Toxicol. Appl. Pharm Acology 1978, 44, 401–411. [Google Scholar] [CrossRef]
- Cho, H.; Jammalamadaka, U.; Tappa, K.; Egbulefu, C.; Prior, J.; Tang, R.; Achilefu, S. 3D Printing of Poloxamer 407 Nanogel Discs and Their Applications in Adjuvant Ovarian Cancer Therapy. Mol. Pharm. 2019, 16, 552–560. [Google Scholar] [CrossRef]
- Tracy, E.P.; Gettler, B.C.; Zakhari, J.S.; Schwartz, R.J.; Williams, S.K.; Birla, R.K. 3D Bioprinting the Cardiac Purkinje System Using Human Adipogenic Mesenchymal Stem Cell Derived Purkinje Cells. Cardiovasc. Eng. Technol. 2020, 11, 587–604. [Google Scholar] [CrossRef] [PubMed]
- Swain, G.P.; Patel, S.; Gandhi, J.; Shah, P. Development of Moxifloxacin Hydrochloride loaded in-situ gel for the treatment of periodontitis: In-vitro drug release study and antibacterial activity. J. Oral. Biol. Craniofac. Res. 2019, 9, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Sheshala, R.; Quah, S.Y.; Tan, G.C.; Meka, V.S.; Jnanendrappa, N.; Sahu, P.S. Investigation on solution-to-gel characteristic of thermosensitive and mucoadhesive biopolymers for the development of moxifloxacin-loaded sustained release periodontal in situ gels. Drug. Deliv. Transl. Res. 2019, 9, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.J.; Balakrishnan, P.; Oh, D.H.; Yeo, W.H.; Park, S.M.; Yong, C.S.; Choi, H.G. Rheological characterization and in vivo evaluation of thermosensitive poloxamer-based hydrogel for intramuscular injection of piroxicam. Int. J. Pharm. 2010, 395, 317–323. [Google Scholar] [CrossRef]
- Imani, K.B.C.; Jo, A.; Choi, G.M.; Kim, B.; Chung, J.W.; Lee, H.S.; Yoon, J. High-Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermo-Responsive Poloxamer Ink Platform. Macromol. Rapid Commun. 2021, 2, e2100579. [Google Scholar] [CrossRef]
- Carvalho, G.C.; Araujo, V.H.S.; Fonseca-Santos, B.; De Araujo, J.T.C.; De Souza, M.P.C.; Duarte, J.L.; Chorilli, M. Highlights in poloxamer-based drug delivery systems as strategy at local application for vaginal infections. Int. J. Pharm. 2021, 602, 120635. [Google Scholar] [CrossRef]
- Buwalda, S.J.; Boere, K.W.; Dijkstra, P.J.; Feijen, J.; Vermonden, T.; Hennink, W.E. Hydrogels in a historical perspective: From simple networks to smart materials. J. Control. Release 2014, 190, 254–273. [Google Scholar] [CrossRef]
- Borges, R.; Kai, K.C.; Lima, C.A.; Zezell, D.M.; de Araujo, D.R.; Marchi, J. Bioactive glass/poloxamer 407 hydrogel composite as a drug delivery system: The interplay between glass dissolution and drug release kinetics. Colloids Surf. B Biointerfaces 2021, 206, 111934. [Google Scholar] [CrossRef]
- Marks, W.H.; Yang, S.C.; Dombi, G.W.; Bhatia, S.K. Carbon nanobrush-containing poloxamer hydrogel composites for tissue regeneration. J. Long Term. Eff. Med. Implant. 2012, 22, 229–236. [Google Scholar] [CrossRef]
- D’Angelo, I.; Garcia-Fuentes, M.; Parajo, Y.; Welle, A.; Vantus, T.; Horvath, A.; Bokonyi, G.; Keri, G.; Alonso, M.J. Nanoparticles based on PLGA:poloxamer blends for the delivery of proangiogenic growth factors. Mol. Pharm. 2010, 7, 1724–1733. [Google Scholar] [CrossRef]
- Ozer, F.; Nisanci, M.; Tas, C.; Rajadas, J.; Alhan, D.; Bozkurt, Y.; Gunal, A.; Demirtas, S.; Isik, S. Sutureless microvascular anastomosis with the aid of heparin loaded poloxamer 407. J. Plas. Reconst. Aesthe. Surg. 2017, 70, 267–273. [Google Scholar] [CrossRef]
- Qassemyar, Q.; Michel, G.; Gianfermi, M.; Atlan, M.; Havet, E.; Luca-Pozner, V. Sutureless venous microanastomosis using thermosensitive poloxamer and cyanoacrylate: Experimental study on a rat model. J. Plas. Reconst. Aesthe. Surg. 2021, 75, 433–438. [Google Scholar] [CrossRef]
- Guo, H.F.; Dai, W.W.; Qian, D.H.; Qin, Z.X.; Lei, Y.; Hou, X.Y.; Wen, C. A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization. Acta Biomater. 2017, 54, 107–116. [Google Scholar] [CrossRef]
- Ma, D.-W.; Zhu, R.; Wang, Y.-Y.; Zhang, Z.-R.; Wang, X.-Y. Evaluation on biocompatibility of biomedical polyurethanes with different hard segment contents. Front. Mater. Sci. 2015, 9, 397–404. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Padalhin, A.R.; Seo, H.S.; Lee, B.T. A hybrid electrospun PU/PCL scaffold satisfied the requirements of blood vessel prosthesis in terms of mechanical properties, pore size, and biocompatibility. J. Biomate. Sci. Polym. Ed. 2013, 24, 1692–1706. [Google Scholar] [CrossRef]
- Le, A.N.M.; Tran, N.M.P.; Phan, T.B.; Tran, P.A.; Tran, L.D.; Nguyen, T.H. Poloxamer additive as luminal surface modification to modulate wettability and bioactivities of small-diameter polyurethane/polycaprolactone electrospun hollow tube for vascular prosthesis applications. Mater. Today Commun. 2021, 26, 12. [Google Scholar] [CrossRef]
- Raymond, J.; Metcalfe, A.; Salazkin, I.; Schwarz, A. Temporary vascular occlusion with poloxamer 407. Biomaterials 2004, 25, 3983–3989. [Google Scholar] [CrossRef]
- Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2001, 53, 321–339. [Google Scholar] [CrossRef]
- Issa, J.P.; do Nascimento, C.; Iyomasa, M.M.; Siessere, S.; Regalo, S.C.; Defino, H.L.; Sebald, W. Bone healing process in critical-sized defects by rhBMP-2 using poloxamer gel and collagen sponge as carriers. Micron 2008, 39, 17–24. [Google Scholar] [CrossRef]
- Choi, J.H.; Choi, O.K.; Lee, J.; Noh, J.; Lee, S.; Park, A.; Rim, M.A.; Reis, R.L.; Khang, G. Evaluation of double network hydrogel of poloxamer-heparin/gellan gum for bone marrow stem cells delivery carrier. Colloids Surf. B Biointerfaces 2019, 181, 879–889. [Google Scholar] [CrossRef]
- Park, Y.E.; Chandramouli, K.; Watson, M.; Zhu, M.; Callon, K.E.; Tuari, D.; Abdeltawab, H.; Svirskis, D.; Musson, D.S.; Sharma, M.; et al. Sustained Delivery of Lactoferrin Using Poloxamer Gels for Local Bone Regeneration in a Rat Calvarial Defect Model. Materials 2021, 15, 212. [Google Scholar] [CrossRef]
- Cameron, M.L.; Clokie; Urist, M.R. Bone Morphogenetic Protein Excipients: Comparative Observations on Poloxamer. Pla. Reconstr. Surg. 2000, 105, 628–637. [Google Scholar] [CrossRef]
- Min, Q.; Yu, X.; Liu, J.; Zhang, Y.; Wan, Y.; Wu, J. Controlled Delivery of Insulin-like Growth Factor-1 from Bioactive Glass-Incorporated Alginate-Poloxamer/Silk Fibroin Hydrogels. Pharmaceutics 2020, 12, 574. [Google Scholar] [CrossRef]
- Dogan, A.; Yalvac, M.E.; Sahin, F.; Kabanov, A.V.; Palotas, A.; Rizvanov, A.A. Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers. Int. J. Nanomed. 2012, 7, 4849–4860. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.-H.; Pan, J.-F.; Miao, Y.-E.; Liu, T.-X.; Xu, F.; Sun, H. Electrospinning of poly (ε-caprolactone-co-lactide)/Pluronic blended scaffolds for skin tissue engineering. J. Mater. Sci. 2014, 49, 7253–7262. [Google Scholar] [CrossRef]
- O’Brien, F.J.; Harley, B.A.; Yannas, I.V.; Gibson, L.J. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005, 26, 433–441. [Google Scholar] [CrossRef]
- Murphy, C.M.; Haugh, M.G.; O’Brien, F.J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010, 31, 461–466. [Google Scholar] [CrossRef]
- Zhou, A.J.; Clokie, C.M.; Peel, S.A. Bone formation in algae-derived and synthetic calcium phosphates with or without poloxamer. J. Craniofac. Surg. 2013, 24, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Rezazadeh, M.; Parandeh, M.; Akbari, V.; Ebrahimi, Z.; Taheri, A. Incorporation of rosuvastatin-loaded chitosan/chondroitin sulfate nanoparticles into a thermosensitive hydrogel for bone tissue engineering: Preparation, characterization, and cellular behavior. Pharm. Dev. Technol. 2019, 24, 357–367. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Chae, S.-W.; Lee, J. Effect of Poloxamer 407 as a carrier vehicle on rotator cuff healing in a rat model. J. Orthop. Surg. Res. 2014, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Fang, Q.; Lin, H.; Yu, X.; Zheng, H.; Wan, Y. Alginate-poloxamer/silk fibroin hydrogels with covalently and physically cross-linked networks for cartilage tissue engineering. Carbohydr. Polym. 2020, 247, 116593. [Google Scholar] [CrossRef] [PubMed]
- Morille, M.; Van-Thanh, T.; Garric, X.; Cayon, J.; Coudane, J.; Noel, D.; Venier-Julienne, M.C.; Montero-Menei, C.N. New PLGA-P188-PLGA matrix enhances TGF-beta3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells. J. Control. Release 2013, 170, 99–110. [Google Scholar] [CrossRef]
- Kavas, A.; Ozdemir, M.; Gurses, S.; Keskin, D.; Tezcaner, A. In vitro investigation and biomechanical modeling of the effects of PLF-68 on osteoarthritis in a three-dimensional model. Biomech. Model. Mechanobiol. 2011, 10, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Rundell, S.; Baars, D.; Phillips, D.; Haut, R. The limitation of acute necrosis in retro-patellar cartilage after a severe blunt impact to the in vivo rabbit patello-femoral joint. J. Orthop. Res. 2005, 23, 1363–1369. [Google Scholar] [CrossRef]
- Phillips, D.M.; Haut, R.C. The use of a non-ionic surfactant (P188) to save chondrocytes from necrosis following impact loading of chondral explants. J. Orthop. Res. 2004, 22, 1135–1142. [Google Scholar] [CrossRef]
- Cao, Y.; Rodriguez, A.; Vacanti, M.; Ibarra, C.; Arevalo, C.; Vacanti, C.A. Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J. Biomater. Sci. Polym. Ed. 1998, 9, 475–487. [Google Scholar] [CrossRef]
- Manouchehri, S.; Bagheri, B.; Rad, S.H.; Nezhad, M.N.; Kim, Y.C.; Park, O.O.; Farokhi, M.; Jouyandeh, M.; Ganjali, M.R.; Yazdi, M.K.; et al. Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Prog. Org. Coat. 2019, 131, 389–396. [Google Scholar] [CrossRef]
- Bao, H.J.; Wang, T.; Zhang, M.Y.; Liu, R.; Dai, D.K.; Wang, Y.Q.; Wang, L.; Zhang, L.; Gao, Y.Z.; Qin, Z.H.; et al. Poloxamer-188 attenuates TBI-induced blood-brain barrier damage leading to decreased brain edema and reduced cellular death. Neurochem. Res. 2012, 37, 2856–2867. [Google Scholar] [CrossRef] [PubMed]
- Follis, F.; Jenson, B.; Blisard, K.; Hall, E.; Wong, R.; Kessler, R.; Temes, T.; Wernly, J. Role of poloxamer 188 during recovery from ischemic spinal cord injury: A preliminary study. J. Inves. Surg. 1996, 9, 149–156. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Jiang, X.; Xiao, J.; Lin, Q.; Yu, W.Z.; Tian, F.R.; Mao, K.L.; Yang, W.; Wong, H.L.; Lu, C.T. Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury. Acta Biomater. 2016, 29, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Y.; Wu, Y.; Zhao, Y.; Chen, H.; Yuan, Y.; Xu, K.; Zhang, H.; Lu, Y.; Wang, J.; et al. Heparin-Poloxamer Thermosensitive Hydrogel Loaded with bFGF and NGF Enhances Peripheral Nerve Regeneration in Diabetic Rats. Biomaterials 2018, 168, 24–37. [Google Scholar] [CrossRef]
- Priya, S.G.; Jungvid, H.; Kumar, A. Skin tissue engineering for tissue repair and regeneration. Tissue Eng. Part B Rev. 2008, 14, 105–118. [Google Scholar] [CrossRef]
- Gutierrez, L.; Vargas-Estrada, D.; Rosario, C.; Sumano, H. Serum and tissue concentrations of doxycycline in broilers after the sub-cutaneous injection of a long-acting formulation. Br. Poult. Sci. 2012, 53, 366–373. [Google Scholar] [CrossRef]
- Soriano-Ruiz, J.L.; Calpena-Campmany, A.C.; Silva-Abreu, M.; Halbout-Bellowa, L.; Bozal-de Febrer, N.; Rodriguez-Lagunas, M.J.; Clares-Naveros, B. Design and evaluation of a multifunctional thermosensitive poloxamer-chitosan-hyaluronic acid gel for the treatment of skin burns. Int. J. Biol. Macromol. 2020, 142, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, R.; Chen, M.; Zhou, Q.; Zheng, Y.; Lu, C.; Bi, J.; Sun, W.; Huang, T.; Li, L.; et al. KGF-2 and FGF-21 poloxamer 407 hydrogel coordinates inflammation and proliferation homeostasis to enhance wound repair of scalded skin in diabetic rats. BMJ Open Diabetes Res. Care 2020, 8, e001009. [Google Scholar] [CrossRef]
- Pan, J.F.; Liu, N.H.; Sun, H.; Xu, F. Preparation and characterization of electrospun PLCL/Poloxamer nanofibers and dextran/gelatin hydrogels for skin tissue engineering. PLoS ONE 2014, 9, e112885. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Pei, L.; Zhang, W.; Shu, G.; Lin, J.; Li, H.; Xu, F.; Tang, H.; Peng, G.; Zhao, L.; et al. Chitosan-poloxamer-based thermosensitive hydrogels containing zinc gluconate/recombinant human epidermal growth factor benefit for antibacterial and wound healing. Mater. Sci. Eng. C Mater Biol. Appl. 2021, 130, 112450. [Google Scholar] [CrossRef] [PubMed]
- Pilny, A.A. Use of a Compounded Poloxamer 407 Antibiotic Topical Therapy as Part of the Successful Management of Chronic Ulcerative Dermatitis in a Congo African Grey Parrot (Psittacus erithacus). J. Avian Med. Surg. 2018, 32, 45–49. [Google Scholar] [CrossRef]
- Yao, Q.; Zheng, Y.W.; Lan, Q.H.; Wang, L.F.; Huang, Z.W.; Chen, R.; Yang, Y.; Xu, H.L.; Kou, L.; Zhao, Y.Z. Aloe/poloxamer hydrogel as an injectable beta-estradiol delivery scaffold with multi-therapeutic effects to promote endometrial regeneration for intrauterine adhesion treatment. Eur. J. Pharm. Sci. 2020, 148, 105316. [Google Scholar] [CrossRef] [PubMed]
- Slutsky, A.S.; Ranieri, V.M. Ventilator-induced lung injury. N. Engl. J. Med. 2013, 369, 2126–2136. [Google Scholar] [CrossRef] [Green Version]
- Terragni, P.; Ranieri, V.M.; Brazzi, L. Novel approaches to minimize ventilator-induced lung injury. Curr. Opin. Crit. Care 2015, 21, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plataki, M.; Lee, Y.D.; Rasmussen, D.L.; Hubmayr, R.D. Poloxamer 188 facilitates the repair of alveolus resident cells in ventilator-injured lungs. Am. J. Respir. Crit. Care Med. 2011, 184, 939–947. [Google Scholar] [CrossRef]
- Dams-O’Connor, K.; Spielman, L.; Singh, A.; Gordon, W.A.; Lingsma, H.F.; Maas, A.I.; Manley, G.T.; Mukherjee, P.; Okonkwo, D.O.; Puccio, A.M.; et al. The impact of previous traumatic brain injury on health and functioning: A TRACK-TBI study. J. Neurotrauma 2013, 30, 2014–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chopp, M.; Emanuele, M.; Zhang, L.; Zhang, Z.G.; Lu, M.; Zhang, T.; Mahmood, A.; Xiong, Y. Treatment of Traumatic Brain Injury with Vepoloxamer (Purified Poloxamer 188). J. Neurotrauma 2018, 35, 661–670. [Google Scholar] [CrossRef]
- Inyang, E.; Abhyankar, V.; Chen, B.; Cho, M. Modulation of in vitro Brain Endothelium by Mechanical Trauma: Structural and Functional Restoration by Poloxamer 188. Sci. Rep. 2020, 10, 3054. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.L.; Chen, X.P.; Li, L.L.; Li, Q.Q.; Li, B.X.; Xue, A.M.; Xu, H.F.; Dai, D.K.; Shen, Y.W.; Tao, L.Y.; et al. Poloxamer 188 attenuates in vitro traumatic brain injury-induced mitochondrial and lysosomal membrane permeabilization damage in cultured primary neurons. J. Neurotrauma 2013, 30, 597–607. [Google Scholar] [CrossRef]
- Bao, H.; Yang, X.; Zhuang, Y.; Huang, Y.; Wang, T.; Zhang, M.; Dai, D.; Wang, S.; Xiao, H.; Huang, G.; et al. The effects of poloxamer 188 on the autophagy induced by traumatic brain injury. Neurosci. Lett. 2016, 634, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Van Nieuwenhove, I.; Tytgat, L.; Ryx, M.; Blondeel, P.; Stillaert, F.; Thienpont, H.; Ottevaere, H.; Dubruel, P.; Van Vlierberghe, S. Soft tissue fillers for adipose tissue regeneration: From hydrogel development toward clinical applications. Acta Biomater. 2017, 63, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, S.; Wei, C.; Xu, Y.; Wang, Y.; Jin, J.; Teng, G. In vivo differentiation of adipose-derived stem cells in an injectable poloxamer-octapeptide hybrid hydrogel. Tissue Cell 2011, 43, 344–349. [Google Scholar] [CrossRef]
- Leroy, A.; Nottelet, B.; Bony, C.; Pinese, C.; Charlot, B.; Garric, X.; Noel, D.; Coudane, J. PLA-poloxamer/poloxamine copolymers for ligament tissue engineering: Sound macromolecular design for degradable scaffolds and MSC differentiation. Biomater. Sci. 2015, 3, 617–626. [Google Scholar] [CrossRef]
- Matthews, K.L., 2nd; Aarsvold, J.N.; Mintzer, R.A.; Chen, C.T.; Lee, R.C. Tc-99m pyrophosphate imaging of poloxamer-treated electroporated skeletal muscle in an in vivo rat model. Burns 2006, 32, 755–764. [Google Scholar] [CrossRef]
- Liu, H.; Li, W.; Liu, C.; Tan, J.; Wang, H.; Hai, B.; Cai, H.; Leng, H.J.; Liu, Z.J.; Song, C.L. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti6Al4V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth. Biofabrication 2016, 8, 045012. [Google Scholar] [CrossRef] [PubMed]
- Alissa Alam, H.; Dalgic, A.D.; Tezcaner, A.; Ozen, C.; Keskin, D. A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2019, 69, 339–350. [Google Scholar] [CrossRef]
- Zambanini, T.; Borges, R.; de Souza, A.C.S.; Justo, G.Z.; Machado, J., Jr.; de Araujo, D.R.; Marchi, J. Holmium-Containing Bioactive Glasses Dispersed in Poloxamer 407 Hydrogel as a Theragenerative Composite for Bone Cancer Treatment. Materials 2021, 14, 1459. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, Z.; Li, Z.; Ji, X.; Yuan, B.; Sun, Y.; Peng, C.; Leng, Y.; Dou, M.; Wang, J.; et al. Functionalized anti-osteoporosis drug delivery system enhances osseointegration of an inorganic–organic bioactive interface in osteoporotic microenvironment. Mater. Des. 2021, 206, 109753. [Google Scholar] [CrossRef]
- Huh, H.W.; Zhao, L.; Kim, S.Y. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer. Carbohydr. Polym. 2015, 126, 130–140. [Google Scholar] [CrossRef]
- Monteiro do Nascimento, M.H.; Ambrosio, F.N.; Ferraraz, D.C.; Windisch-Neto, H.; Querobino, S.M.; Nascimento-Sales, M.; Alberto-Silva, C.; Christoffolete, M.A.; Franco, M.; Kent, B.; et al. Sulforaphane-loaded hyaluronic acid-poloxamer hybrid hydrogel enhances cartilage protection in osteoarthritis models. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 128, 112345. [Google Scholar] [CrossRef] [PubMed]
- Rey-Rico, A.; Venkatesan, J.K.; Frisch, J.; Rial-Hermida, I.; Schmitt, G.; Concheiro, A.; Madry, H.; Alvarez-Lorenzo, C.; Cucchiarini, M. PEO-PPO-PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomater. 2015, 27, 42–52. [Google Scholar] [CrossRef]
- Yang, R.; Chen, M.; Yang, X.; Sun, W.; Lu, C.; Hui, Q.; Shi, C.; Li, X.; Wang, X. Modified poloxamer 407 and hyaluronic acid thermosensitive hydrogel-encapsulated keratinocyte growth factor 2 improves knee osteoarthritis in rats. Mater. Des. 2021, 210, 110086. [Google Scholar] [CrossRef]
- Zhang, T.T.; Chen, S.Q.; Dou, H.B.; Liu, Q.J.; Shu, G.; Lin, J.C.; Zhang, W.; Peng, G.N.; Zhong, Z.J.; Fu, H.L. Novel glucosamine-loaded thermosensitive hydrogels based on poloxamers for osteoarthritis therapy by intra-articular injection. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021, 118, 8. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Rodriguez, P.; Marino, C.; Vazquez, J.A.; Caeiro-Rey, J.R.; Landin, M. Targeting joint inflammation for osteoarthritis management through stimulus-sensitive hyaluronic acid based intra-articular hydrogels. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 128, 112254. [Google Scholar] [CrossRef] [PubMed]
- Kandalam, S.; De Berdt, P.; Ucakar, B.; Vanvarenberg, K.; Bouzin, C.; Gratpain, V.; Diogenes, A.; Montero-Menei, C.N.; des Rieux, A. Human dental stem cells of the apical papilla associated to BDNF-loaded pharmacologically active microcarriers (PAMs) enhance locomotor function after spinal cord injury. Int. J. Pharm. 2020, 587, 119685. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, A.; Feng, F.; Jiang, Q.; Sun, H.; Chai, Y.; Yang, R.; Wang, Z.; Hou, J.; Li, R. Effect of the hyaluronic acid-poloxamer hydrogel on skin-wound healing: In vitro and in vivo studies. Anim. Model Exp. Med. 2019, 2, 107–113. [Google Scholar] [CrossRef]
- Popescu, I.; Turtoi, M.; Suflet, D.M.; Dinu, M.V.; Darie-Nita, R.N.; Anghelache, M.; Calin, M.; Constantin, M. Alginate/poloxamer hydrogel obtained by thiol-acrylate photopolymerization for the alleviation of the inflammatory response of human keratinocytes. Int. J. Biol. Macromol. 2021, 180, 418–431. [Google Scholar] [CrossRef]
- Valeron Bergh, V.J.; Johannessen, E.; Andersen, T.; Tonnesen, H.H. Evaluation of porphyrin loaded dry alginate foams containing poloxamer 407 and beta-cyclodextrin-derivatives intended for wound treatment. Pharm. Dev. Technol. 2018, 23, 761–770. [Google Scholar] [CrossRef]
- Liu, T.; Aman, A.; Ainiwaer, M.; Ding, L.; Zhang, F.; Hu, Q.; Song, Y.; Ni, Y.; Tang, X. Evaluation of the anti-biofilm effect of poloxamer-based thermoreversible gel of silver nanoparticles as a potential medication for root canal therapy. Sci. Rep. 2021, 11, 12577. [Google Scholar] [CrossRef]
Poloxamer | Pluronic | PEO% | Viscosity (Pa·s) | Surface Tension (Dyn cm−1) | Average Molecular Weight | Melting Point (°C) | * HLB | CMC | Cloud Point | Application |
---|---|---|---|---|---|---|---|---|---|---|
P105 | L35 | 50 | 0.375 | 49 | 1900 | 7 | 18–23 | 5.3 | 73 | Surfactant, used for synthesizing the copolymer |
P123 | L43 | 30 | 0.310 | 47 | 1850 | −1 | 7–12 | 2.2 | 42 | Surfactant, drug encapsulation |
P124 | L44 | 40 | 0.440 | 45 | 2200 | 16 | 12–18 | 3.6 | 65 | Surfactant, cosmetics, and pharmaceuticals applications |
P182 | L62 | 20 | 0.450 | 43 | 2500 | −4 | 1–7 | 4 | 32 | Nonionic surfactant, delivery system |
P184 | L64 | 40 | 0.850 | 43 | 2900 | 16 | 12–18 | 4.8 | 58 | Surfactant |
P188 | F68 | 80 | 1.000 | 50 | 8400 | 52 | >24 | 4.8 | >100 | Hemorheological activity, antithrombotic, cell membrane closure, phagocytic activation (stimulating phagocytosis and superoxide anion production), and neutrophil threshing. Increased expression of osteogenic and cartilage genes |
P234 | P84 | 40 | 0.280 | 42 | 4200 | 34 | 12–18 | 7.1 | 74 | |
P235 | P85 | 50 | 0.310 | 42 | 4600 | 34 | 12–18 | 6.5 | 85 | Inhibition of multidrug resistance |
P237 | F87 | 70 | 0.700 | 44 | 7700 | 49 | >24 | 9.1 | >100 | Scaffold, delivery system |
P238 | F88 | 80 | 2.300 | 48 | 11,400 | 54 | >24 | 2.5 | >100 | Regulation of erythrocyte aggregation |
P288 | F98 | 80 | 2.700 | 43 | 13,000 | 58 | >24 | 7.7 | >100 | Regulation of erythrocyte aggregation |
P333 | P103 | 30 | 0.285 | 34 | 4950 | 30 | 7–12 | 6.1 | 86 | Body and hand creams, lotions |
P334 | P104 | 40 | 0.390 | 33 | 5900 | 32 | 12–18 | 3.4 | 81 | Hair tonics, dressings, delivery system |
P335 | P105 | 50 | 0.750 | 39 | 6500 | 35 | 12–18 | 6.2 | 91 | Delivery system, breath freshener, and mouthwash |
P338 | F108 | 80 | 2.800 | 41 | 14,600 | 57 | >24 | 2.2 | >100 | Surfactant, coating |
P403 | P123 | 30 | 0.350 | 34 | 5750 | 31 | 7–12 | 4.4 | 90 | Inhibition of multidrug resistance, administration |
P407 | F127 | 70 | 3.100 | 41 | 12,600 | 56 | 18–23 | 2.8 | >100 | Stimulation of macrophages, controlled-release gels, stimulation of EGFc production, tissue engineering, long circulation particles |
References | Scaffold Materials | Additive | Site of Action | Types | Main Function | Shortcoming |
---|---|---|---|---|---|---|
[106] | Simvastatin Poloxamer 407 Hydrogel | Ti-6Al-4V Scaffolds | Bone vascularization | Thermosensitive hydrogel | Improve neovascularization, osseointegration, and bone ingrowth | The injected thermosensitive biodegradable hydrogel blocked the pores |
[55] | Poloxamer 407 BSA | Heparin | Arterial vascular stumps | Gel | Heparinized P407 can be applied as an endovascular scaffold for tissue adhesive anastomosis without suture | Residual heparin is probably at the anastomosis |
[61] | Poloxamer 407 | contrast agent and food coloring | Arteries | Gel | An adjunct tool for devascularization | The effect of injections affects the gel effect |
[60] | PU/PCL/Poloxamer | DMF and THF | Small diameter PU/PCL The electrostatic spinning hollow tube | Double hollow tube with hydrophilic inner PU/PCL /Poloxamer | Promote cell adhesion and cell proliferation and inhibit platelet adhesion in vascular engineering. | |
[56] | Poloxamer 407 | Cyanoacrylate | Venous vessel stumps | Gel | Keep the venous cavity open and prevent it from collapsing. Promise precise access to the vessel stump and lower the risk of glue penetration into the lumen | |
[54] | PLGA: poloxamer 188 | FGF-2 or PDGF-BB | Biological fluids | Nanoparticle system | PLGA: poloxamer nanoparticles are stable, non-toxic, and can be effectively freeze-dried for long-term storage in simulated biological fluids. The nanosystem preserves the bioactivity of the encapsulated GFs | |
[63] | Poloxamer 407/collagen sponge | rhBMP-2 | Rat Mandible | Hydrogels | Maintains the protein in situ and has a chemotactic effect on mesenchymal cell differentiation. | Residual, but does not affect the bone healing process |
[64] | Poloxamer-heparin/gellan gum double network hydrogel | rBMSCs | Under the dorsal subcutaneous region of the nude rat. | Hydrogels | A moderate increase in poloxamer enhances cell adhesion and proliferation | |
[107] | PCL/gelatin/Poloxamer 188 | Electrospinning scaffold | Ability to enhance osteogenic performance | |||
[65] | Poloxamer 188/Poloxamer 407 | Lactoferrin | Rat skull | Hydrogels | Maintain the viability of osteoblasts | Early inhibition of osteoblast differentiation |
[108] | Poloxamer 407 | Holmium-Containing Bioactive Glasses | Hydrogels | Glass ions facilitate the micellization of poloxamers. Promotes preosteoblast proliferation and osteosarcoma cell death | ||
[74] | Poloxamer 407 | Rat shoulder | Hydrogels | P407 promotes the number and maturation of collagen fibers | ||
[106] | Titanium alloy | Simvastatin- Poloxamer 407 | Rabbit tibia | Scaffold | Promotes new bone expansion and neovascularization | |
[66] | Poloxamer 407 | BMP Excipients | Rat hind leg | Hydrogels | Poloxamer delivers BMP better than other carriers | |
[109] | Poloxamer 407 | BMP | Rabbit Femur | Hydrogels | Promote osteoblast differentiation, inhibit osteoclast activity, and prevent continuous destruction of bone around the interface | |
[72] | Poloxamer 407 | Calcium Phosphate Ceramics | Rabbit skull | The incorporation of p407 does not hinder the bone repair ability and bone conductivity of cap ceramics | ||
[110] | HA/Poloxamer | Hydrogels | Increased Ha content enhances intermolecular chelation with calcium ions, promoting calcium phosphate nucleation and increased growth | |||
[68] | Pluronic P85/Pluronic F127/Pluronic F68 | Human tooth germ stem cells | Solution | PF68 increases the pluripotency of stem cells to transform into osteogenic, cartilage, and adipogenic tissues | ||
[73] | Poloxamer 407/HA | Rosuvastatin-loaded chitosan/chondroitin sulfate | Hydrogels | Improve osteoblast viability and proliferation ability | ||
[67] | Bioactive Glass-Incorporated Alginate-Poloxamer/Silk Fibroin Hydrogels | IGF-1 | Hydrogels | Maintain the biological activity of IGF-1 | ||
[75] | Alginate-poloxamer/silk fibroin | Chondrocytes | Hydrogels | Maintenance of chondrocyte growth and preservation of chondrocyte phenotype | ||
[111] | Poloxamer/HA | SFN Sulforaphane | Hydrogels | Promotes cartilage protection in vitro and reduces osteoarticular inflammation. | ||
[76] | PLGA-P188-PLGA | TGF-β3 | Hydrogels | Sustained protein release to improve hMSC survival | ||
[112] | Pluronic F68/F127 | rAAV | polymer micelles | Gene repair of hMSCs to promote cartilage formation | ||
[113] | Poloxamer/HA | KGF-2 | Rat left knee joint | Hydrogels | Improve articular cartilage morphology and inflammation, reduce proteoglycan loss | |
[114] | Poloxamer 188/Poloxamer 407 | GlcN | Hydrogels | GlcN released from gel binds to chondrocytes preferentially compared to the aqueous solution, reducing drug loss | ||
[115] | Poloxamer/hyaluronic acid | β-lapachone | Reduce secretion of pro-inflammatory molecule CXCL8 and restore synovial fluid rheological properties | |||
[85] | poloxamer 407 Heparin | bFGF/NGF | Axons and myelin sheaths of the sciatic nervous system | Gel | Own good affinity for large amounts of GFs and stably control its release and prevents in vitro degradation | |
[84] | Hyaluronic acid/Poloxamer | NGF | Rat spine | Hydrogels | Reduce reactive astrocytes, inhibit axon regeneration protein, inhibit glial scarring | Functional improvement and regeneration of composite hydrogels did not reach control levels |
[17] | Hyaluronic acid/Poloxamer | bFGF, NGF | Rat spine | Hydrogels | Improve neuronal survival, axonal regeneration, inhibition of reactive astrocytes, and repair of motor function in injured spinal cord | |
[116] | PLGA-poloxamer 188-PLGA triblock polymer | SCAP and BDNF | Rostrally and caudally of rat spinal cord | Microspheres | Reduce inflammation. | |
[88] | poloxamer 407/Chitosan/Hyaluronic acid | Vitamins A, D, and E | Flexor side of the left forearm of a human | Hydrogels | A weak acidic environment promotes fibroblast growth | |
[89] | Poloxamer 407 | FGF-21 | Rat back | Hydrogels | Promote epithelialization and granulation tissue formation, own a good anti-inflammatory effect and promote cell value-added, accelerate the healing of burned skin | |
[91] | Poloxamer/Chitosan/ | ZnG/rhEGF@Chit/Polo | Rat back | Hydrogels | Reduce the secretion of the inflammatory factor IL-6, which has an anti-inflammatory effect | |
[90] | PLCL/ Poloxamer Nanofibers and Dextran/Gelatin Hydrogels | Nanofibers | Good mechanical properties and support cell survival | |||
[117] | Poloxamer/Hyaluronic acid | Hydrogels | Enhance the accumulation of protein values in the wound area, increase permeability, and promote wound healing. | |||
[118] | Alginate/poloxamer | Hydrogels | Induce proliferation of human keratin-forming cells. Reduces local infection of wound inflammation and promotes healing | |||
[119] | Poloxamer 407and/or βCD-derivatives intended | Thpp | Foam | The presence of P407and/or βCD-derivatives promoted the diffusion of THPP in the foam. | ||
[92] | Poloxamer | 2% doxycycline, 1% chloramphenicol, 0.5% mupirocin | Parrot wings | Hydrogels | Expand half-life and prolong retention of GFs on the surface of the skin through subcutaneous injection of the drug-containing poloxamer gel formulation compared to oral administration | |
[103] | Poloxamer 407/octapeptide | ASCs | Rat neck | Hydrogels | Allow sufficient time for adipose tissue differentiation and promote capillary repair | The use of poloxamer gel alone had no positive effect on adipose tissue regeneration. |
[104] | Poly(lactide)/poloxamer | Anterior cruciate ligament | Microfibers and scaffolds composed of twisted/ braided fibers | |||
[105] | Poloxamer 188 | Electroporated muscle | Injection solution | Significantly reduce residual 99mTc PYP in electroporated skeletal muscle, reduce damage, and improve survivability | ||
[120] | Poloxamer 188 and Poloxamer 407 | AgNPs | Root canal | Thermosensitive hydrogel | AgNPs-PL can remove the biofilm of enterobacter faecalis in dentin and dentin tubules. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, N.; Dai, C.-Y.; Mao, X.; Lv, X.; Gu, Y.; Lee, E.-S.; Jiang, H.-B.; Sun, Y. Poloxamer-Based Scaffolds for Tissue Engineering Applications: A Review. Gels 2022, 8, 360. https://doi.org/10.3390/gels8060360
Cui N, Dai C-Y, Mao X, Lv X, Gu Y, Lee E-S, Jiang H-B, Sun Y. Poloxamer-Based Scaffolds for Tissue Engineering Applications: A Review. Gels. 2022; 8(6):360. https://doi.org/10.3390/gels8060360
Chicago/Turabian StyleCui, Naiyu, Chun-Yu Dai, Xuran Mao, Xun Lv, Yue Gu, Eui-Seok Lee, Heng-Bo Jiang, and Yunhan Sun. 2022. "Poloxamer-Based Scaffolds for Tissue Engineering Applications: A Review" Gels 8, no. 6: 360. https://doi.org/10.3390/gels8060360
APA StyleCui, N., Dai, C. -Y., Mao, X., Lv, X., Gu, Y., Lee, E. -S., Jiang, H. -B., & Sun, Y. (2022). Poloxamer-Based Scaffolds for Tissue Engineering Applications: A Review. Gels, 8(6), 360. https://doi.org/10.3390/gels8060360