Analysis of Stability, Rheological and Structural Properties of Oleogels Obtained from Peanut Oil Structured with Yellow Beeswax
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Stability, Texture and Microrheological Properties
2.2. Analysis of Microscopic Observations
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Oleogel Preparation Method
4.2.2. Oleogel Stability—Centrifuge Method
- Mg—oleogel and test tube weight after centrifugation [g];
- Mo—tube weight [g];
- Mz—oleogel and test tube weight before centrifugation [g].
4.2.3. Oleogel Microrheological Parameters Evolution Using MS-DWS Method
4.2.4. Test for Spreadability of Oleogels
4.2.5. Analysis of Oleogel Morphology
4.2.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hwang, H.S. A critical review on structures, health effects, oxidative stability, and sensory properties of oleogels. Biocatal. Agric. Biotechnol. 2020, 26, 101657. [Google Scholar] [CrossRef]
- Sobolev, R.; Frolova, Y.; Sarkisyan, V.; Makarenko, M.; Kochetkova, A. Effect of beeswax and combinations of its fractions on the oxidative stability of oleogels. Food Biosc. 2022, 48, 101744. [Google Scholar] [CrossRef]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef] [PubMed]
- Zambelli, A. Current Status of High Oleic seed oils in Food processing. J. Am. Oil Chem. Soc. 2020, 98, 129–137. [Google Scholar] [CrossRef]
- Kirtane, A.R.; Karavasili, C.; Wahane, A.; Freitas, D.; Booz, K.; Le, D.T.H.; Hue, T.; Scala, S.; Lopes, A.; Hess, K.; et al. Development of oil-based gels as versatile drug delivery system for pediatric applications. Sci. Adv. 2022, 8, 21. [Google Scholar] [CrossRef]
- Park, C.; Maleky, F. A critical review of the last 10 years of oleogels in food. Front. Sustain. Food Syst. 2020, 4, 139. [Google Scholar] [CrossRef]
- Yousuf, B.; Wu, S.; Gao, Y. Characteristics of karaya gum based films: Amelioration by inclusion of Schisandra chinensis oil and its oleogel in the film formulation. Food Chem. 2021, 345, 128859. [Google Scholar] [CrossRef]
- Okuro, P.K.; Martins, A.J.; Vicente, A.; Cunha, R.L. Perspective on oleogelator mixtures, structure design and behaviour towards digestibility of oleogels. Curr. Opin. Food Sci. 2020, 35, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, C.R.; Carvalho, T.T.; Manchope, M.F.; Artero, N.A.; Rasquel-Oliveira, F.S.; Fattori, V.; Casagrande, R.; Waldiceu, A.; Verri, W.A., Jr. Therapeutic potential of flavonoids in pain and inflammation: Mechanisms of action, preclinical and clinical data, and pharmaceutical development. Molecules 2020, 25, 762. [Google Scholar] [CrossRef] [Green Version]
- Hamed, R.; Ala’a AbuRezeq, O.; Tarawneh, O. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis. Drug Dev. Ind. Pharm. 2018, 44, 1488–1497. [Google Scholar] [CrossRef]
- Stortz, T.A.; Marangoni, A.G. The replacement for petrolatum: Thixotropic ethylcellulose oleogels in triglyceride oils. Green Chem. 2014, 16, 3064–3070. [Google Scholar] [CrossRef]
- Sikorska, K.; Szulc, J.; Pietkiewicz, J.; Sznitowska, M. Oleogels with salicylic acid in drug compounding. Farm. Pol. 2009, 65, 5–8. [Google Scholar]
- Dassanayake, L.S.K.; Kodali, D.R.; Ueno, S.; Sato, K. Physical properties of rice bran wax in bulk and organogels. J. Am. Oil Chem. Soc. 2009, 86, 1163–1173. [Google Scholar] [CrossRef]
- Sowa-Kasprzak, K.; Żwawiak, J.; Zaprutko, L. Organogels as modern drug carriers. Polimery 2018, 63, 169–177. [Google Scholar] [CrossRef]
- Rehman, K.; Zulfakar, M.H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm. 2014, 40, 433–440. [Google Scholar] [CrossRef]
- Onacik-Gür, S.; Żbikowska, A.; Przybysz, M.; Kowalska, M. Assessment of physical properties of structured oils and palm fat. Mater. Plast. 2017, 54, 800–805. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Valoppi, F.; Pal, K. Oleogels and Organogels: A Promising Tool for New Functionalities. Gels 2022, 8, 349. [Google Scholar] [CrossRef]
- Kupiec, M.; Żbikowska, A.; Marciniak-Łukasiak, K.; Kowalska, M. Rapeseed Oil in New Application: Assessment of Structure of Oleogels Based on their Physicochemical Properties and Microscopic Observations. Agriculture 2020, 10, 211. [Google Scholar] [CrossRef]
- Shimomura, Y.; Tsuchiya, M.; Ueno, S.; Shiota, M. Effect of triacylglycerol compositions and physical properties on the granular crystal formation of fat blends. J. Am. Oil Chem. Soc. 2019, 96, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Blake, A.I.; Co, E.D.; Marangoni, A.G. Structure and Physical Properties of Plant Wax Crystal Networks and Their Relationship to Oil Binding Capacity. J. Am. Oil Chem. Soc. 2014, 91, 885–903. [Google Scholar] [CrossRef]
- Szymańska, I.; Żbikowska, A.; Onacik-Gür, S. Candelilla wax-based oleogels versus palm oil: Evaluation of physical properties of innovative and conventional lipids using optical techniques. J. Sci. Food Agric. 2022, 102, 2309–2320. [Google Scholar] [CrossRef]
- Medronho, B.; Filipe, A.; Costa, C.; Romano, A.; Lindman, B.; Edlund, H.; Norgren, M. Microrheology of novel cellulose stabilized oil-in-water emulsions. J. Colloid Interf. Sci. 2018, 531, 225–232. [Google Scholar] [CrossRef]
- Żbikowska, A.; Szymańska, I.; Kowalska, M. Impact of inulin addition on properties of natural yogurt. Appl. Sci. 2020, 10, 4317. [Google Scholar] [CrossRef]
- Mansel, B.W.; Keen, S.; Patty, P.J.; Hemar, Y.; Williams, M.A.K. A practical review of microrheological techniques. In Rheology—New Concepts, Applications and Methods; Durairaj, R., Ed.; IntechOpen: London, UK, 2013. [Google Scholar]
- Chen, H.; Jing, G.; Ji, A.; Song, S.; Yin, L. Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis. Food Chem. 2019, 292, 188–196. [Google Scholar] [CrossRef]
- Pang, M.; Shi, Z.; Lei, Z.; Ge, Y.; Jiang, S.; Cao, L. Structure and thermal properties of beeswax-based oleogels with different types of vegetable oil. Grasas Aceites 2020, 71, e380. [Google Scholar] [CrossRef]
- Yi, B.; Kim, M.-J.; Lee, S.Y.; Lee, J. Physicochemical properties and oxidative stability of oleogels made of carnauba wax with canola oil or beewax with grapeseed oil. Food Sci. Biotech. 2017, 26, 79–87. [Google Scholar] [CrossRef]
- Da Pieve, S.; Calligaris, S.; Co, E.; Nicoli, M.C.; Marangoni, A.G. Shear Nanostructuring of Monoglyceride Organogels. Food Biophys. 2010, 5, 211–217. [Google Scholar] [CrossRef]
- Öğütcü, M.; Yimaz, E. Comparison of the Pomegranate Seed Oil Organogels of Carnauba Wax and Monoglyceride. J. Appl. Polymer Sci. 2014, 132, 1–8. [Google Scholar] [CrossRef]
- Onacik-Gür, S.; Żbikowska, A. Effect of high-oleic rapeseed oil oleogels on the quality of short-dough biscuits and fat migration. J. Food Sci. Technol. 2020, 57, 1609–1618. [Google Scholar] [CrossRef]
- Kim, D.; Oh, I. The Characteristic of Insect Oil for a Potential Component of Oleogel and Its Application as a Solid Fat Replacer in Cookies. Gels 2022, 8, 355. [Google Scholar] [CrossRef]
- Öğütcü, M.; Arifoğlu, N.; Yimaz, E. Storage stability of cod liver oil organogels formed with beeswax and carnauba wax. Int. J. Food Sci. Technol. 2015, 50, 404–412. [Google Scholar] [CrossRef]
- Żbikowska, A.; Kupiec, M.; Kowalska, M. Comparison of oleogels properties obtained with different structure-forming substances. Pol. J. Natur. Sci. 2019, 34, 273–284. [Google Scholar]
- Öğütcü, M.; Arifoğlu, N.; Yimaz, E. Preparation and Characterization of Virgin Olive Oil-Beeswax Oleogel Emulsion Products. J. Am. Oil Chem. Soc. 2015, 92, 459–471. [Google Scholar] [CrossRef]
- Pasqua, A.; Fleury, M.; Brun, A.; Cristiano, M.C.; Cosco, D. Potential application of micro-rheology-Rheolaser Lab® in food sciences. In Advanced Technologies in Food Science I—Innovative Techniques for Food Analysis, Characterization and Quality Control; Coats, A.J.S., Ed.; HSCVC Ltd.: Dubai, United Arab Emirates, 2014; Volume 6, pp. 60–69. [Google Scholar]
- Cristiano, M.C.; Froiio, F.; Mancuso, A.; De Gaetano, F. The Rheolaser Master. and Kinexus Rotational Rheometer® to Evaluate the Influence of Topical Drug Delivery Systems on Rheological Features of Topical Poloxamer Gel. Molecules 2020, 25, 1979. [Google Scholar] [CrossRef] [Green Version]
- Zhua, Q.; Qiua, S.; Zhangb, H.; Chenga, Y.; Yina, L. Physical stability, microstructure and micro-rheological properties of water-in-oil-in-water (W/O/W) emulsions stabilized by porcine gelatin. Food Chem. 2018, 253, 63–70. [Google Scholar] [CrossRef]
- Silva, P.M.; Martins, A.J.; Fasolin, L.H.; Vicente, A.A. Modulation and Characterization of Wax-Based Olive Oil Organogels in View of Their Application in the Food Industry. Gels 2021, 7, 12. [Google Scholar] [CrossRef]
- Wijarnprecha, K.; Aryusuk, K.; Santiwattana, P.; Sonwai, S.; Rousseau, D. Structure and rheology of oleogels made from rice bran wax and rice bran oil. Food Res. Inter. 2018, 112, 199–208. [Google Scholar] [CrossRef]
- Moschakis, T. Microrheology and particle tracking in food gels and emulsions. Curr. Opin. Colloid Interface Sci. 2013, 18, 311–323. [Google Scholar] [CrossRef]
- Kim, H.S.; Şenbil, N.; Zhang, C.; Scheffold, F.; Mason, T.G. Diffusing wave microrheology of highly scattering concentrated monodisperse emulsions. Proc. Natl. Acad. Sci. 2019, 116, 7766–7771. [Google Scholar] [CrossRef] [Green Version]
- Porpora, G.; Rusciano, F.; Pastore, R.; Greco, F. Comparing Microscopic and Macroscopic Dynamics in a Paradigmatic Model of Glass-Forming Molecular Liquid. Int. J. Mol. Sci. 2022, 23, 3556. [Google Scholar] [CrossRef]
- Hwang, H.-S.; Kim, S.; Evans, K.O.; Koga, C.; Lee, Y. Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Struct. 2015, 5, 10–20. [Google Scholar] [CrossRef]
- Bonvehí, J.S.; Bermejo, F.O. Detection of adulterated commercial Spanish beeswax. Food Chem. 2012, 132, 642–648. [Google Scholar] [CrossRef]
- Rocha, J.C.B.; Lopes, J.D.; Mascarenhas, M.C.N.; Arellano, D.B.; Guerreiro, L.M.R.; Cunha, R.L. Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Res. Int. 2013, 50, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, E.; Öğütcü, M. Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. J. Am. Oil Chem. Soc. 2014, 91, 1007–1017. [Google Scholar] [CrossRef]
- Szymańska, I.; Żbikowska, A.; Kowalska, M. Physical stability of model emulsions based on ethyl cellulose olegels. Int. Agrophysics 2020, 34, 289–300. [Google Scholar] [CrossRef]
- Tisserand, C.; Brunel, R. Micro-Rheology using Multi-Speckle DWS with video camera Application to rheological properties. In Proceedings of the 19th French Congress of Mechanics, Marseille, France, 24 August 2009. [Google Scholar]
- Tisserand, C.; Kotzev, A.; Fleury, M.; Brunel, R.; Bru, P.; Meunier, G. Non-contact measurement of viscoelastic properties of biopolymers. NSTI-Nanotechnol. 2011, 1, 36–40. [Google Scholar]
Parameter | Variant * | |||
---|---|---|---|---|
2% | 4% | 6% | 8% | |
Centrifugal stability [%] | 99.02 a ± 0.93 | 99.38 a ± 0.54 | 99.58 a ± 0.82 | 99.56 a ± 0.32 |
Firmness [N] | 0.854 a ± 0.02 | 1.418 b ± 0.01 | 7.663 c ± 0.05 | 14.010 d ± 0.02 |
Stickiness [N] | −1.010 a ± 0.01 | −1680 b ± 0.01 | −9.178 c ± 0.02 | −16.552 d ± 0.04 |
Work of shear [N mm] | 0.660 a ± 0.01 | 2.351 b ± 0.01 | 7.469 c ± 0.02 | 15.901 d ± 0.03 |
Work of adhesion [N mm] | −0.198 a ± 0.01 | −0.354 b ± 0.02 | −1.801 c ± 0.02 | −3.039 d ± 0.02 |
Elasticity Index (EI) [nm−2] | 0.131 a ± 0.00 | 0.232 b ± 0.01 | 0.594 c ± 0.00 | 0.824 d ± 0.01 |
Macroscopic Viscosity Index (MVI) [nm−2] | 0.101 a ± 0.00 | 0.311 b ± 0.00 | 0.912 c ± 0.01 | 1.389 d ± 0.01 |
Average length of oleogel crystals [nm] | 15.95 c ± 5.72 | 12.80 a,b ± 4.76 | 10.53 a ± 4.31 | 11.03 a ± 5.02 |
Minimum (min) length of oleogel crystals [nm] | 5.60 | 6.14 | 5.89 | 5.31 |
Maximum (max) length of oleogel crystals [nm] | 40.96 | 23.04 | 17.80 | 20.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zbikowska, A.; Onacik-Gür, S.; Kowalska, M.; Sowiński, M.; Szymańska, I.; Żbikowska, K.; Marciniak-Łukasiak, K.; Werpachowski, W. Analysis of Stability, Rheological and Structural Properties of Oleogels Obtained from Peanut Oil Structured with Yellow Beeswax. Gels 2022, 8, 448. https://doi.org/10.3390/gels8070448
Zbikowska A, Onacik-Gür S, Kowalska M, Sowiński M, Szymańska I, Żbikowska K, Marciniak-Łukasiak K, Werpachowski W. Analysis of Stability, Rheological and Structural Properties of Oleogels Obtained from Peanut Oil Structured with Yellow Beeswax. Gels. 2022; 8(7):448. https://doi.org/10.3390/gels8070448
Chicago/Turabian StyleZbikowska, Anna, Sylwia Onacik-Gür, Małgorzata Kowalska, Michał Sowiński, Iwona Szymańska, Katarzyna Żbikowska, Katarzyna Marciniak-Łukasiak, and Wojciech Werpachowski. 2022. "Analysis of Stability, Rheological and Structural Properties of Oleogels Obtained from Peanut Oil Structured with Yellow Beeswax" Gels 8, no. 7: 448. https://doi.org/10.3390/gels8070448
APA StyleZbikowska, A., Onacik-Gür, S., Kowalska, M., Sowiński, M., Szymańska, I., Żbikowska, K., Marciniak-Łukasiak, K., & Werpachowski, W. (2022). Analysis of Stability, Rheological and Structural Properties of Oleogels Obtained from Peanut Oil Structured with Yellow Beeswax. Gels, 8(7), 448. https://doi.org/10.3390/gels8070448