Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators
Abstract
:1. Introduction
2. Light-Responsive Molecular Switches
2.1. Azobenzene Conjugated Peptide Derivatives and Light-Assisted Self-Assembly/Disassembly Phenomenon
SL. No | System | Minimum gelation conc. (MGC, wt% and mg mL−1) | Media | Light | Moduli (Before Light irradiation) Pa | Moduli (After UV-Light irradiation) Pa | Moduli (After Vis-Light irradiation) Pa | Morphology | |||
---|---|---|---|---|---|---|---|---|---|---|---|
G′ | G″ | G′ | G″ | G′ | G″ | ||||||
Azobenzene (Azo) derivatives | |||||||||||
1. | Ptrans-Azo−1 [112] | 17 mM | Phosphate buffer (pH 8.0) | 365 nm (UV) 450 nm (Vis) | ~104–105 | ~103–104 | NR | NR | NR | NR | Nanofibers Micellar aggregates (UV) Nanofibers (Vis) |
2. | OGAC/ AzoC2Py (5:1) [115] | 0.13 wt% of OGAC and accordingly AzoC2Py | Water | 365 nm (UV) >400 nm (Vis) | NR | NR | NR | NR | NR | NR | Long nanofibers Helical nanofibers (UV) Thick and straight Fibers (Vis) |
3. | Ptrans-Azo−6 [74] | 16.2 mM | Water (pH~10) | 365 nm (UV) | ~102 | ~10 | ~103 | ~102 | NA | NA | Thin fibers Long rod (UV) |
4. | Ptrans-Azo−7 [87] | 15 mg mL−1 | PBS (pH 7.4) | 530 nm (GL) 410 nm (Vis) | ~104 | ~103 | NR | NR | NR | NR | Fine fibers |
Arylazopyrazoles (AAP) derivatives | |||||||||||
5. | P-1+ PAAP−1+CDV [116] | 2.5 wt% of P-1 and 0.25 wt% of PAAP−1 | Water | 365 nm (UV) 520 nm (Vis) | ~105 | 104–105 | 102–103 | ~102 | 104–105 | ~104 | Cross-linked fibers |
6. | P-2+ PAAP−2+CDVs [117] | 1.0 wt% of P-2 and 20 % of PAAP−2 | Water | 365 nm (UV) 520 nm (Vis) | ~27 × 103 | NR | ~24 × 103 | NR | ~26.5 × 103 | NR | NR |
7 | PAAP−3 [118] | 5.0 wt% | Water | 365 nm (UV) 520 nm (Vis) | ~7.8 × 103 | ~10 | ~6.3 × 103 | >1 | ~8 × 103 | ~100 | NR |
8. | PAAP−3 +Agarose [118] | 5.0 wt% of PAAP−3 and 1.7 wt % of Agarose | Water | 365 nm (UV) 520 nm (Vis) | ~6.8 × 103 | ~1 | ~6.3 × 103 | >1 | ~8.3 × 103 | ~100 | NR |
9. | PAAP−4 [90] | 2 mg mL−1 | Water (pH~5) | 365 nm (UV) 520 nm (Vis) | 325–350 | ~25 | 125–225 | ~50 | 150–300 | ~50 | Aggregate |
10. | PAAP−5 [90] | 2 mg mL−1 | Water (pH~5) | 365 nm (UV) 520 nm (Vis) | 140–180 | <25 | 140–170 | ~25 | 200–300 | 50–75 | Cross-linked fibers |
Spiropyran (SP) derivatives | |||||||||||
11. | PMC−4 [119] | 11 mM | Water (pH 3) | 254 nm (UV) 420 nm (Vis) | NR | NR | NR | NR | NR | NR | Fibers |
12. | SPI-RGD [120] | 4.0 mg mL−1 | Water (pH 5.2) | 365 nm (UV) 420 nm (Vis)/∆ | 300 | ~80 | 2.3 | ~NR | ~315–335 | NR | Fibers |
13. | PSP−5 [121] | 10 mM | Water | 254 nm (UV) 420 nm (Vis)/∆ | NA | NA | NR | NR | NA | NA | No discernible structures Twisted nanofibrils (Vis) |
Coumarin (Cou) and anthracene (Anth) derivatives | |||||||||||
14. | PCou−1 [122] | 10mM | 365 nm | Water (pH 7) | ~20 (Pa) | ~10 (Pa) | ~150 (Pa) | ~70 (Pa) | NA | NA | Fibers |
15. | PCou−2 [22] | 5 mg mL | 365 nm | Water (pH) | 103–104 | 102–103 | ~104 | ~103 | NA | NA | Fibers |
16. | PCou−3 [123] | 2.7 mg mL−1 | 365 nm | PEG200:H2O = 1:2. | NR | NR | NA | NA | NA | NA | Spiral-shaped fibers Fibers (UV) |
17. | PAnth−1 [102] | 5 mg mL−1 | 350 nm (UV) | water | 102–103 | 101–102 | 0.1–10 | 0.01–1.0 | NA | NA | Nanoribbons |
Other derivatives (Benzoylhydrazone (BHz), Nitrobenzyl (NB) and 6-nitroveratryloxycarbonyl (Nvoc)) | |||||||||||
18. | BHz-F(F)(F) [92] | 0.5 wt% | 325 nm | MES buffer (pH 7.0) | ~104 | ~103 | NR | NR | 103–104 | ~103 | Nanofibers NR (UV) Nanofibers (Dark) |
19. | MAX7CNB [124] | 2 wt% | (260 < λ < 360 nm) | Water (pH 9) | 103–104 | ~102 | ~103 | ~102 | NA | NA | Fibers |
20. | PNB−1 [125] | 4.0 × 103 M | 350 nm (UV) | Water | NA | NA | ~105 | ~104 | NA | NA | Quadruple helix (Before UV) Cylindrical fibrils |
21. | PNB−2 [126] | 4.0 × 103 M | 350 nm (UV) | Water | NA | NA | ~105 | ~104 | NA | NA | Spheres (Before UV) Fibers |
22. | PNB−3 [127] | 1.70 mM | 350 nm (UV) | Water (pH 7.4) | ~1–2 | ~1 | NA | NA | NA | NA | Long and tangled fibers Less and finer fibers (UV) |
23. | NVOC-FF [128] | 5 mg mL−1 | 365 nm (UV) | DMSO:Water (5:95) | 103–104 | 102–103 | ~1 | NR | NA | NA | Fibers |
2.2. Arylazopyrazoles Conjugated Peptide Derivatives with Light-Sensitive Gelation Characteristics
2.3. Spiropyran Conjugated Peptide Derivatives and Light-Induced Gelation Behaviour
2.4. Other Photo-Responsive Peptide Derivatives and Light-Induced Gel-Sol Transition or Vice-Versa
3. Challenges, Future Prospective, and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Das, S.; Das, D. Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications. Front. Chem. 2021, 9, 770102. [Google Scholar] [CrossRef] [PubMed]
- Okesola, B.O.; Wu, Y.; Derkus, B.; Gani, S.; Wu, D.; Knani, D.; Smith, D.K.; Adams, D.J.; Mata, A. Supramolecular Self-Assembly to Control Structural and Biological Properties of Multicomponent Hydrogels. Chem. Mater. 2019, 31, 7883–7897. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Mondal, J.H.; Das, D. Peptide hydrogels. RSC Adv. 2013, 3, 9117–9149. [Google Scholar] [CrossRef]
- Busseron, E.; Ruff, Y.; Moulin, E.; Giuseppone, N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale 2013, 5, 7098–7140. [Google Scholar] [CrossRef]
- Makam, P.; Gazit, E. Minimalistic peptide supramolecular co-assembly: Expanding the conformational space for nanotechnology. Chem. Soc. Rev. 2018, 47, 3406–3420. [Google Scholar] [CrossRef]
- Ahmed, S.; Mondal, J.H.; Behera, N.; Das, D. Self-Assembly of Peptide-Amphiphile Forming Helical Nanofibers and in Situ Template Synthesis of Uniform Mesoporous Single Wall Silica Nanotubes. Langmuir 2013, 29, 14274–14283. [Google Scholar] [CrossRef]
- Singha, N.; Gupta, P.; Pramanik, B.; Ahmed, S.; Dasgupta, A.; Ukil, A.; Das, D. Hydrogelation of a Naphthalene Diimide Appended Peptide Amphiphile and Its Application in Cell Imaging and Intracellular pH Sensing. Biomacromolecules 2017, 18, 3630–3641. [Google Scholar] [CrossRef]
- Seow, W.Y.; Hauser, C.A.E. Short to ultrashort peptide hydrogels for biomedical uses. Mater. Today 2014, 17, 381–388. [Google Scholar] [CrossRef]
- Tsutsumi, H.; Tanaka, K.; Chia, J.Y.; Mihara, H. Short self-assembling peptides with a urea bond: A new type of supramolecular peptide hydrogel materials. Pept. Sci. 2021, 113, e24214. [Google Scholar] [CrossRef]
- Falcone, N.; Shao, T.; Andoy, N.M.O.; Rashid, R.; Sullan, R.M.A.; Sun, X.; Kraatz, H.-B. Multi-component peptide hydrogels—A systematic study incorporating biomolecules for the exploration of diverse, tuneable biomaterials. Biomater. Sci. 2020, 8, 5601–5614. [Google Scholar] [CrossRef]
- Ligorio, C.; Hoyland, J.A.; Saiani, A. Self-assembling peptide hydrogels as functional tools to tackle intervertebral disc degeneration. Gels 2022, 8, 211. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, B.; Singha, N.; Das, D. Sol-, Gel-, and Paper-Based Detection of Picric Acid at Femtogram Level by a Short Peptide Gelator. ACS Appl. Polym. Mater. 2019, 1, 833–843. [Google Scholar] [CrossRef]
- Singha, N.; Srivastava, A.; Pramanik, B.; Ahmed, S.; Dowari, P.; Chowdhuri, S.; Das, B.K.; Debnath, A.; Das, D. Unusual confinement properties of a water insoluble small peptide hydrogel. Chem. Sci. 2019, 10, 5920–5928. [Google Scholar] [CrossRef]
- Pramanik, B.; Ahmed, S.; Singha, N.; Das, B.K.; Dowari, P.; Das, D. Unorthodox Combination of Cation−π and Charge-Transfer Interactions within a Donor–Acceptor Pair. Langmuir 2019, 35, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, Q.; Zhu, S.; Liu, H.; Chen, J. Preparation and applications of peptide-based injectable hydrogels. RSC Adv. 2019, 9, 28299–28311. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Gao, B.; Ma, Z.; Liu, J.; Zhang, J.; Liang, J.; Chen, Z.; Wu, L.; Li, W. Host-Guest Interaction Driven Peptide Assembly into Photoresponsive Two-Dimensional Nanosheets with Switchable Antibacterial Activity. CCS Chem. 2021, 3, 1949–1962. [Google Scholar] [CrossRef]
- Panja, S.; Adams, D.J. Stimuli responsive dynamic transformations in supramolecular gels. Chem. Soc. Rev. 2021, 50, 5165–5200. [Google Scholar] [CrossRef]
- Draper, E.R.; Adams, D.J. Photoresponsive gelators. Chem. Commun. 2016, 52, 8196–8206. [Google Scholar] [CrossRef]
- Fatás, P.; Bachl, J.; Oehm, S.; Jiménez, A.I.; Cativiela, C.; Díaz Díaz, D. Multistimuli-Responsive Supramolecular Organogels Formed by Low-Molecular-Weight Peptides Bearing Side-Chain Azobenzene Moieties. Chem. Eur. J. 2013, 19, 8861–8874. [Google Scholar] [CrossRef]
- Diaferia, C.; Balasco, N.; Sibillano, T.; Ghosh, M.; Adler-Abramovich, L.; Giannini, C.; Vitagliano, L.; Morelli, G.; Accardo, A. Amyloid-Like Fibrillary Morphology Originated by Tyrosine-Containing Aromatic Hexapeptides. Chem. Eur. J. 2018, 24, 6804–6817. [Google Scholar] [CrossRef]
- Diaferia, C.; Rosa, E.; Balasco, N.; Sibillano, T.; Morelli, G.; Giannini, C.; Vitagliano, L.; Accardo, A. The Introduction of a Cysteine Residue Modulates the Mechanical Properties of Aromatic-Based Solid Aggregates and Self-Supporting Hydrogels. Chem. Eur. J. 2021, 27, 14886–14898. [Google Scholar] [CrossRef] [PubMed]
- Draper, E.R.; McDonald, T.O.; Adams, D.J. Photodimerisation of a coumarin-dipeptide gelator. Chem. Commun. 2015, 51, 12827–12830. [Google Scholar] [CrossRef] [PubMed]
- Fichman, G.; Gazit, E. Self-assembly of short peptides to form hydrogels: Design of building blocks, physical properties and technological applications. Acta Biomat. 2014, 10, 1671–1682. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.D.; Steed, J.W. Gels with sense: Supramolecular materials that respond to heat, light and sound. Chem. Soc. Rev. 2016, 45, 6546–6596. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Li, T.; Zhang, J.; Tian, H. Stimuli-responsive hydrogels: Fabrication and biomedical applications. View 2022, 3, 20200112. [Google Scholar] [CrossRef]
- Ahmed, S.; Pramanik, B.; Sankar, K.N.A.; Srivastava, A.; Singha, N.; Dowari, P.; Srivastava, A.; Mohanta, K.; Debnath, A.; Das, D. Solvent Assisted Tuning of Morphology of a Peptide-Perylenediimide Conjugate: Helical Fibers to Nano-Rings and their Differential Semiconductivity. Sci. Rep. 2017, 7, 9485. [Google Scholar] [CrossRef]
- Ahmed, S.; Amba Sankar, K.N.; Pramanik, B.; Mohanta, K.; Das, D. Solvent Directed Morphogenesis and Electrical Properties of a Peptide–Perylenediimide Conjugate. Langmuir 2018, 34, 8355–8364. [Google Scholar] [CrossRef]
- Wang, J.; Tao, K.; Zhou, P.; Pambou, E.; Li, Z.; Xu, H.; Rogers, S.; King, S.; Lu, J.R. Tuning self-assembled morphology of the Aβ(16–22) peptide by substitution of phenylalanine residues. Colloids Surf. B Biointerfaces 2016, 147, 116–123. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Zhang, L.; Wang, D.; Wang, W.; Wang, L.; Chen, C. Tuning the self-assembled nanostructures of ultra-short bola peptides via side chain variations of the hydrophobic amino acids. J. Mol. Liq. 2020, 315, 113765. [Google Scholar] [CrossRef]
- Li, L.; Sun, R.; Zheng, R. Tunable morphology and functionality of multicomponent self-assembly: A review. Mater. Des. 2021, 197, 109209. [Google Scholar] [CrossRef]
- Pashuck, E.T.; Cui, H.; Stupp, S.I. Tuning Supramolecular Rigidity of Peptide Fibers through Molecular Structure. J. Am. Chem. Soc. 2010, 132, 6041–6046. [Google Scholar] [CrossRef] [PubMed]
- Edwards-Gayle, C.J.C.; Hamley, I.W. Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Org. Biomol. Chem. 2017, 15, 5867–5876. [Google Scholar] [CrossRef] [PubMed]
- Jonker, A.M.; Löwik, D.W.P.M.; van Hest, J.C.M. Peptide- and Protein-Based Hydrogels. Chem. Mater. 2012, 24, 759–773. [Google Scholar] [CrossRef]
- Habibi, N.; Kamaly, N.; Memic, A.; Shafiee, H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today 2016, 11, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Ashwanikumar, N.; Kumar, N.A.; Nair, S.A.; Kumar, G.S.V. Phenylalanine-containing self-assembling peptide nanofibrous hydrogel for the controlled release of 5-fluorouracil and leucovorin. RSC Adv. 2014, 4, 29157–29164. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef]
- He, R.; Finan, B.; Mayer, J.P.; DiMarchi, R.D. Peptide Conjugates with Small Molecules Designed to Enhance Efficacy and Safety. Molecules 2019, 24, 1855. [Google Scholar] [CrossRef]
- Pethő, L.; Kasza, G.; Lajkó, E.; Láng, O.; Kőhidai, L.; Iván, B.; Mező, G. Amphiphilic drug–peptide–polymer conjugates based on poly(ethylene glycol) and hyperbranched polyglycerol for epidermal growth factor receptor targeting: The effect of conjugate aggregation on in vitro activity. Soft Matter 2020, 16, 5759–5769. [Google Scholar] [CrossRef]
- Jeong, W.-J.; Bu, J.; Kubiatowicz, L.J.; Chen, S.S.; Kim, Y.; Hong, S. Peptide–nanoparticle conjugates: A next generation of diagnostic and therapeutic platforms? Nano Converg. 2018, 5, 38. [Google Scholar] [CrossRef]
- Wei, G.; Wang, Y.; Huang, X.; Hou, H.; Zhou, S. Peptide-Based Nanocarriers for Cancer Therapy. Small Methods 2018, 2, 1700358. [Google Scholar] [CrossRef]
- Zheng, Y.; Mao, K.; Chen, S.; Zhu, H. Chirality Effects in Peptide Assembly Structures. Front. Bioeng. Biotechnol. 2021, 9, 703004. [Google Scholar] [CrossRef] [PubMed]
- Garifullin, R.; Guler, M.O. Supramolecular chirality in self-assembled peptide amphiphile nanostructures. Chem. Commun. 2015, 51, 12470–12473. [Google Scholar] [CrossRef]
- Hu, K.; Jiang, Y.; Xiong, W.; Li, H.; Zhang, P.-Y.; Yin, F.; Zhang, Q.; Geng, H.; Jiang, F.; Li, Z.; et al. Tuning peptide self-assembly by an in-tether chiral center. Sci. Adv. 2018, 4, eaar5907. [Google Scholar] [CrossRef] [PubMed]
- Dowari, P.; Pramanik, B.; Das, D. pH and secondary structure instructed aggregation to a thixotropic hydrogel by a peptide amphiphile. Bull. Mater. Sci. 2020, 43, 70. [Google Scholar] [CrossRef]
- Dowari, P.; Saha, S.; Pramanik, B.; Ahmed, S.; Singha, N.; Ukil, A.; Das, D. Multiple Cross-Linking of a Small Peptide to Form a Size Tunable Biopolymer with Efficient Cell Adhesion and Proliferation Property. Biomacromolecules 2018, 19, 3994–4002. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Hirst, A.R.; Huang, B.; Castelletto, V.; Hamley, I.W.; Smith, D.K. Self-Organisation in the Assembly of Gels from Mixtures of Different Dendritic Peptide Building Blocks. Chem. Eur. J. 2007, 13, 2180–2188. [Google Scholar] [CrossRef]
- Rosa, E.; Diaferia, C.; Gianolio, E.; Sibillano, T.; Gallo, E.; Smaldone, G.; Stornaiuolo, M.; Giannini, C.; Morelli, G.; Accardo, A. Multicomponent Hydrogel Matrices of Fmoc-FF and Cationic Peptides for Application in Tissue Engineering. Macromol. Biosci. 2022, 22, 2200128. [Google Scholar] [CrossRef]
- Jain, R.; Roy, S. Designing a bioactive scaffold from coassembled collagen–laminin short peptide hydrogels for controlling cell behaviour. RSC Adv. 2019, 9, 38745–38759. [Google Scholar] [CrossRef]
- Giraud, T.; Bouguet-Bonnet, S.; Stébé, M.-J.; Richaudeau, L.; Pickaert, G.; Averlant-Petit, M.-C.; Stefan, L. Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides. Nanoscale 2021, 13, 10566–10578. [Google Scholar] [CrossRef]
- Jain, R.; Pal, V.K.; Roy, S. Triggering Supramolecular Hydrogelation Using a Protein–Peptide Coassembly Approach. Biomacromolecules 2020, 21, 4180–4193. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Yang, J.; Zhao, Z.; Lian, Z.; Liang, G. Intracellular coassembly boosts the anti-inflammation capacity of dexamethasone. Nanoscale 2017, 9, 17717–17721. [Google Scholar] [CrossRef] [PubMed]
- Radvar, E.; Azevedo, H.S. Supramolecular Nanofibrous Peptide/Polymer Hydrogels for the Multiplexing of Bioactive Signals. ACS Biomater. Sci. Eng. 2019, 5, 4646–4656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hou, X.; Gao, J.; Ren, C.; Guo, Q.; Fan, H.; Liu, J.; Zhang, W.; Liu, J. A coassembled peptide hydrogel boosts the radiosensitization of cisplatin. Chem. Commun. 2020, 56, 13017–13020. [Google Scholar] [CrossRef]
- Ji, W.; Tang, Y.; Makam, P.; Yao, Y.; Jiao, R.; Cai, K.; Wei, G.; Gazit, E. Expanding the Structural Diversity and Functional Scope of Diphenylalanine-Based Peptide Architectures by Hierarchical Coassembly. J. Am. Chem. Soc. 2021, 143, 17633–17645. [Google Scholar] [CrossRef]
- Halperin-Sternfeld, M.; Ghosh, M.; Sevostianov, R.; Grigoriants, I.; Adler-Abramovich, L. Molecular co-assembly as a strategy for synergistic improvement of the mechanical properties of hydrogels. Chem. Commun. 2017, 53, 9586–9589. [Google Scholar] [CrossRef]
- Okesola, B.O.; Mata, A. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem. Soc. Rev. 2018, 47, 3721–3736. [Google Scholar] [CrossRef]
- Diaferia, C.; Morelli, G.; Accardo, A. Fmoc-diphenylalanine as a suitable building block for the preparation of hybrid materials and their potential applications. J. Mater. Chem. B 2019, 7, 5142–5155. [Google Scholar] [CrossRef]
- Diaferia, C.; Ghosh, M.; Sibillano, T.; Gallo, E.; Stornaiuolo, M.; Giannini, C.; Morelli, G.; Adler-Abramovich, L.; Accardo, A. Fmoc-FF and hexapeptide-based multicomponent hydrogels as scaffold materials. Soft Matter 2019, 15, 487–496. [Google Scholar] [CrossRef]
- Raymond, D.M.; Nilsson, B.L. Multicomponent peptide assemblies. Chem. Soc. Rev. 2018, 47, 3659–3720. [Google Scholar] [CrossRef]
- Jorgensen, M.D.; Chmielewski, J. Co-assembled Coiled-Coil Peptide Nanotubes with Enhanced Stability and Metal-Dependent Cargo Loading. ACS Omega 2022, 7, 20945–20951. [Google Scholar] [CrossRef]
- Carrick, L.M.; Aggeli, A.; Boden, N.; Fisher, J.; Ingham, E.; Waigh, T.A. Effect of ionic strength on the self-assembly, morphology and gelation of pH responsive β-sheet tape-forming peptides. Tetrahedron 2007, 63, 7457–7467. [Google Scholar] [CrossRef]
- Lee, S.; Trinh, T.H.T.; Yoo, M.; Shin, J.; Lee, H.; Kim, J.; Hwang, E.; Lim, Y.-b.; Ryou, C. Self-Assembling Peptides and Their Application in the Treatment of Diseases. Int. J. Mol. Sci. 2019, 20, 5850. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Silva, T.L.; Leach, D.G.; Li, I.C.; Wang, X.; Hartgerink, J.D. Self-Assembling Multidomain Peptides: Design and Characterization of Neutral Peptide-Based Materials with pH and Ionic Strength Independent Self-Assembly. ACS Biomater. Sci. Eng. 2019, 5, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Zhang, Q.; Quiñones-Frías, M.C.; Hsu, A.Y.; Zhang, Y.; Rodal, A.; Hong, P.; Luo, H.R.; Xu, B. Enzyme-Responsive Peptide Thioesters for Targeting Golgi Apparatus. J. Am. Chem. Soc. 2022, 144, 6709–6713. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Q.; Shy, A.N.; Yi, M.; He, H.; Lu, S.; Xu, B. Enzymatically Forming Intranuclear Peptide Assemblies for Selectively Killing Human Induced Pluripotent Stem Cells. J. Am. Chem. Soc. 2021, 143, 15852–15862. [Google Scholar] [CrossRef]
- Li, J.; Xu, B. 19—Enzyme-mediated self-assembly. In Self-Assembling Biomaterials; Azevedo, H.S., da Silva, R.M.P., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 399–417. [Google Scholar]
- Zhou, J.; Xu, B. Enzyme-Instructed Self-Assembly: A Multistep Process for Potential Cancer Therapy. Bioconjug. Chem. 2015, 26, 987–999. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, R.; Qi, W.; Wang, Y.; Su, R.; He, Z. Enzyme–substrate interactions promote the self-assembly of amino acid derivatives into supramolecular hydrogels. J. Mater. Chem. B 2016, 4, 844–851. [Google Scholar] [CrossRef]
- Huang, R.; Wang, Y.; Qi, W.; Su, R.; He, Z. Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires. Nanoscale Res. Lett. 2014, 9, 653. [Google Scholar] [CrossRef]
- Kopeček, J.; Yang, J. Peptide-directed self-assembly of hydrogels. Acta Biomater. 2009, 5, 805–816. [Google Scholar] [CrossRef] [Green Version]
- Dehsorkhi, A.; Castelletto, V.; Hamley, I.W. Self-assembling amphiphilic peptides. J. Pept. Sci. 2014, 20, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, R.; Gelain, F. Programmable stiffness and stress–relaxation of cross-linked self-assembling peptide hydrogels. J. Appl. Polym. Sci. 2022, 139, 51759. [Google Scholar] [CrossRef]
- Das, B.K.; Pramanik, B.; Chowdhuri, S.; Scherman, O.A.; Das, D. Light-triggered syneresis of a water insoluble peptide-hydrogel effectively removes small molecule waste contaminants. Chem. Commun. 2020, 56, 3393–3396. [Google Scholar] [CrossRef] [PubMed]
- Mondal, J.H.; Ahmed, S.; Ghosh, T.; Das, D. Reversible deformation–formation of a multistimuli responsive vesicle by a supramolecular peptide amphiphile. Soft Matter 2015, 11, 4912–4920. [Google Scholar] [CrossRef]
- Li, L.; Scheiger, J.M.; Levkin, P.A. Design and Applications of Photoresponsive Hydrogels. Adv. Mater. 2019, 31, 1807333. [Google Scholar] [CrossRef]
- Jia, S.; Fong, W.-K.; Graham, B.; Boyd, B.J. Photoswitchable Molecules in Long-Wavelength Light-Responsive Drug Delivery: From Molecular Design to Applications. Chem. Mater. 2018, 30, 2873–2887. [Google Scholar] [CrossRef]
- Volarić, J.; Szymanski, W.; Simeth, N.A.; Feringa, B.L. Molecular photoswitches in aqueous environments. Chem. Soc. Rev. 2021, 50, 12377–12449. [Google Scholar] [CrossRef]
- Yao, X.; Li, T.; Wang, J.; Ma, X.; Tian, H. Recent Progress in Photoswitchable Supramolecular Self-Assembling Systems. Adv. Opt. Mater. 2016, 4, 1322–1349. [Google Scholar] [CrossRef]
- Wu, D.; Xie, X.; Kadi, A.A.; Zhang, Y. Photosensitive peptide hydrogels as smart materials for applications. Chin. Chem. Lett. 2018, 29, 1098–1104. [Google Scholar] [CrossRef]
- Garifullin, R.; Guler, M.O. Electroactive peptide-based supramolecular polymers. Mater. Today Bio 2021, 10, 100099. [Google Scholar] [CrossRef]
- Devika, V.; Sreelekshmi, P.J.; Rajeev, N.; Aiswarya Lakshmi, S.; Chandran, A.; Gouthami, G.B.; Sadanandan, S. Recent Advances in Peptides-Based Stimuli-Responsive Materials for Biomedical and Therapeutic Applications: A Review. Mol. Pharm. 2022, 19, 1999–2021. [Google Scholar] [CrossRef]
- Jervis, P.J.; Hilliou, L.; Pereira, R.B.; Pereira, D.M.; Martins, J.A.; Ferreira, P.M.T. Evaluation of a Model Photo-Caged Dehydropeptide as a Stimuli-Responsive Supramolecular Hydrogel. Nanomaterials 2021, 11, 704. [Google Scholar] [CrossRef]
- Smith, D.J.; Brat, G.A.; Medina, S.H.; Tong, D.; Huang, Y.; Grahammer, J.; Furtmüller, G.J.; Oh, B.C.; Nagy-Smith, K.J.; Walczak, P.; et al. A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels. Nat. Nanotechnol. 2016, 11, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Xing, P.; Chen, H.; Xiang, H.; Zhao, Y. Selective Coassembly of Aromatic Amino Acids to Fabricate Hydrogels with Light Irradiation-Induced Emission for Fluorescent Imprint. Adv. Mater. 2018, 30, 1705633. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Barreda, D.; Angulo-Pachón, C.A.; Galindo, F.; Miravet, J.F. Photoreversible formation of nanotubes in water from an amphiphilic azobenzene derivative. Cheml. Commun. 2021, 57, 11545–11548. [Google Scholar] [CrossRef]
- Karcher, J.; Kirchner, S.; Leistner, A.-L.; Hald, C.; Geng, P.; Bantle, T.; Gödtel, P.; Pfeifer, J.; Pianowski, Z.L. Selective release of a potent anticancer agent from a supramolecular hydrogel using green light. RSC Adv. 2021, 11, 8546–8551. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Wang, Z.; Xie, L.; Feng, C.; He, G.; Hu, H.; Sun, R.; Zhu, H. A supramolecular gel made from an azobenzene-based phenylalanine derivative: Synthesis, self-assembly, and dye adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127289. [Google Scholar] [CrossRef]
- Larik, F.A.; Fillbrook, L.L.; Nurttila, S.S.; Martin, A.D.; Kuchel, R.P.; Al Taief, K.; Bhadbhade, M.; Beves, J.E.; Thordarson, P. Ultra-Low Molecular Weight Photoswitchable Hydrogelators. Angew. Chem. Int. Ed. 2021, 60, 6764–6770. [Google Scholar] [CrossRef]
- Chu, C.-W.; Stricker, L.; Kirse, T.M.; Hayduk, M.; Ravoo, B.J. Light-Responsive Arylazopyrazole Gelators: From Organic to Aqueous Media and from Supramolecular to Dynamic Covalent Chemistry. Chem. Eur. J. 2019, 25, 6131–6140. [Google Scholar] [CrossRef]
- Sallee, A.; Ghebreyessus, K. Photoresponsive Zn2+–specific metallohydrogels coassembled from imidazole containing phenylalanine and arylazopyrazole derivatives. Dalton Trans. 2020, 49, 10441–10451. [Google Scholar] [CrossRef]
- Nakamura, K.; Tanaka, W.; Sada, K.; Kubota, R.; Aoyama, T.; Urayama, K.; Hamachi, I. Phototriggered Spatially Controlled Out-of-Equilibrium Patterns of Peptide Nanofibers in a Self-Sorting Double Network Hydrogel. J. Am. Chem. Soc. 2021, 143, 19532–19541. [Google Scholar] [CrossRef] [PubMed]
- Weyandt, E.; ter Huurne, G.M.; Vantomme, G.; Markvoort, A.J.; Palmans, A.R.A.; Meijer, E.W. Photodynamic Control of the Chain Length in Supramolecular Polymers: Switching an Intercalator into a Chain Capper. J. Am. Chem. Soc. 2020, 142, 6295–6303. [Google Scholar] [CrossRef] [PubMed]
- Behanna, H.A.; Rajangam, K.; Stupp, S.I. Modulation of Fluorescence through Coassembly of Molecules in Organic Nanostructures. J. Am. Chem. Soc. 2007, 129, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Heise, I.; Görner, H.; Gärtner, W. Peptide Release upon Photoconversion of 2-Nitrobenzyl Compounds into Nitroso Derivatives. Photochem. Photobiol. 2011, 87, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
- Peters, F.B.; Brock, A.; Wang, J.; Schultz, P.G. Photocleavage of the Polypeptide Backbone by 2-Nitrophenylalanine. Chem. Biol. 2009, 16, 148–152. [Google Scholar] [CrossRef]
- Tatsu, Y.; Nishigaki, T.; Darszon, A.; Yumoto, N. A caged sperm-activating peptide that has a photocleavable protecting group on the backbone amide. FEBS Lett. 2002, 525, 20–24. [Google Scholar] [CrossRef]
- Grunwald, C.; Schulze, K.; Reichel, A.; Weiss, V.U.; Blaas, D.; Piehler, J.; Wiesmüller, K.-H.; Tampé, R. In situ assembly of macromolecular complexes triggered by light. Proc. Natl. Acad. Sci. USA 2010, 107, 6146–6151. [Google Scholar] [CrossRef]
- Mason, M.L.; Lalisse, R.F.; Finnegan, T.J.; Hadad, C.M.; Modarelli, D.A.; Parquette, J.R. pH-Controlled Chiral Packing and Self-Assembly of a Coumarin Tetrapeptide. Langmuir 2019, 35, 12460–12468. [Google Scholar] [CrossRef]
- Wang, C.; Fu, L.; Hu, Z.; Zhong, Y. A mini-review on peptide-based self-assemblies and their biological applications. Nanotechnology 2021, 33, 062004. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhan, J.; Xu, G.; Chen, Y.; Qin, Q.; Liao, X.; Ma, S.; Yang, Z.; Cai, Y. Enzyme-Instructed Self-Assembly Enabled Monomer–Excimer Transition to Construct Higher Ordered Luminescent Supramolecular Assembly for Activity-based Bioimaging. Angew. Chem. Int. Ed. 2021, 60, 8121–8129. [Google Scholar] [CrossRef]
- Chivers, P.R.A.; Dookie, R.S.; Gough, J.E.; Webb, S.J. Photo-dissociation of self-assembled (anthracene-2-carbonyl)amino acid hydrogels. Chem. Commun. 2020, 56, 13792–13795. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Chakraborty, P.; Das, S.; Bairi, P.; Nandi, A.K. A Comparative Account of the Kinetics of Light-Induced E–Z Isomerization of an Anthracene-Based Organogelator in Sol, Gel, Xerogel, and Powder States: Fiber to Crystal Transformation. Langmuir 2016, 32, 5373–5382. [Google Scholar] [CrossRef] [PubMed]
- Truong, V.X.; Li, F.; Forsythe, J.S. Versatile Bioorthogonal Hydrogel Platform by Catalyst-Free Visible Light Initiated Photodimerization of Anthracene. ACS Macro Lett. 2017, 6, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, N.; Hirose, T.; Matsuda, K. Self-assembly of photochromic diarylethene–peptide conjugates stabilized by β-sheet formation at the liquid/graphite interface. Chem. Commun. 2019, 55, 5099–5102. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-B.; Zhang, S.; Bai, E.; Cao, X.; Wang, J.; Qi, J.; Liu, J.; Zhao, J.; Zhang, L.; Yoon, J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. Adv. Mater. 2022, 34, 2108289. [Google Scholar] [CrossRef]
- de Loos, M.; van Esch, J.; Kellogg, R.M.; Feringa, B.L. Chiral Recognition in Bis-Urea-Based Aggregates and Organogels through Cooperative Interactions. Angew. Chem. Int. Ed. 2001, 40, 613–616. [Google Scholar] [CrossRef]
- Bandara, H.M.D.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. [Google Scholar] [CrossRef]
- Doran, T.M.; Ryan, D.M.; Nilsson, B.L. Reversible photocontrol of self-assembled peptide hydrogel viscoelasticity. Polym. Chem. 2014, 5, 241–248. [Google Scholar] [CrossRef]
- Pianowski, Z.L.; Karcher, J.; Schneider, K. Photoresponsive self-healing supramolecular hydrogels for light-induced release of DNA and doxorubicin. Chem. Commun. 2016, 52, 3143–3146. [Google Scholar] [CrossRef]
- Samai, S.; Sapsanis, C.; Patil, S.P.; Ezzeddine, A.; Moosa, B.A.; Omran, H.; Emwas, A.-H.; Salama, K.N.; Khashab, N.M. A light responsive two-component supramolecular hydrogel: A sensitive platform for the fabrication of humidity sensors. Soft Matter 2016, 12, 2842–2845. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, J.K.; Nalluri, S.K.M.; Javid, N.; Webb, H.; Ulijn, R.V. Biocatalytic amide condensation and gelation controlled by light. Chem. Commun. 2014, 50, 5462–5464. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Qiu, Z.; Xu, Y.; Shi, J.; Lin, H.; Zhang, Y. Supramolecular hydrogels based on short peptides linked with conformational switch. Org. Biomol. Chem. 2011, 9, 2149–2155. [Google Scholar] [CrossRef] [PubMed]
- Matsuzawa, Y.; Tamaoki, N. Photoisomerization of Azobenzene Units Controls the Reversible Dispersion and Reorganization of Fibrous Self-Assembled Systems. J. Phys. Chem. B 2010, 114, 1586–1590. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Qin, L.; Liu, M. A dual thermal and photo-switchable shrinking–swelling supramolecular peptide dendron gel. Chem. Commun. 2016, 52, 930–933. [Google Scholar] [CrossRef]
- Chu, C.-W.; Ravoo, B.J. Hierarchical supramolecular hydrogels: Self-assembly by peptides and photo-controlled release via host–guest interaction. Chem. Commun. 2017, 53, 12450–12453. [Google Scholar] [CrossRef]
- Nowak, B.P.; Ravoo, B.J. Magneto- and photo-responsive hydrogels from the co-assembly of peptides, cyclodextrins, and superparamagnetic nanoparticles. Faraday Discuss. 2019, 219, 220–228. [Google Scholar] [CrossRef]
- Nowak, B.P.; Ravoo, B.J. Photoresponsive hybrid hydrogel with a dual network of agarose and a self-assembling peptide. Soft Matter 2020, 16, 7299–7304. [Google Scholar] [CrossRef]
- Qiu, Z.; Yu, H.; Li, J.; Wang, Y.; Zhang, Y. Spiropyran-linked dipeptide forms supramolecular hydrogel with dual responses to light and to ligand–receptor interaction. Chem. Commun. 2009, 23, 3342–3344. [Google Scholar] [CrossRef]
- Wang, W.; Hu, J.; Zheng, M.; Zheng, L.; Wang, H.; Zhang, Y. Multi-responsive supramolecular hydrogels based on merocyanine–peptide conjugates. Org. Biomol. Chem. 2015, 13, 11492–11498. [Google Scholar] [CrossRef]
- Liu, M.; Creemer, C.N.; Reardon, T.J.; Parquette, J.R. Light-driven dissipative self-assembly of a peptide hydrogel. Chem. Commun. 2021, 57, 13776–13779. [Google Scholar] [CrossRef]
- Kim, S.H.; Sun, Y.; Kaplan, J.A.; Grinstaff, M.W.; Parquette, J.R. Photo-crosslinking of a self-assembled coumarin-dipeptide hydrogel. New J. Chem. 2015, 39, 3225–3228. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, H.; Li, G.; Liu, M.; Ding, J.; Huang, X.; Gao, W.; Huayue, W. A photocleavable low molecular weight hydrogel for light-triggered drug delivery. Chin. Chem. Lett. 2019, 30, 485–488. [Google Scholar] [CrossRef]
- Haines, L.A.; Rajagopal, K.; Ozbas, B.; Salick, D.A.; Pochan, D.J.; Schneider, J.P. Light-Activated Hydrogel Formation via the Triggered Folding and Self-Assembly of a Designed Peptide. J. Am. Chem. Soc. 2005, 127, 17025–17029. [Google Scholar] [CrossRef] [PubMed]
- Muraoka, T.; Cui, H.; Stupp, S.I. Quadruple Helix Formation of a Photoresponsive Peptide Amphiphile and Its Light-Triggered Dissociation into Single Fibers. J. Am. Chem. Soc. 2008, 130, 2946–2947. [Google Scholar] [CrossRef]
- Muraoka, T.; Koh, C.-Y.; Cui, H.; Stupp, S.I. Light-Triggered Bioactivity in Three Dimensions. Angew. Chem. Int. Ed. 2009, 48, 5946–5949. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Chang, R.; Duan, H.-Z.; Chen, Y.-X. Metal ion and light sequentially induced sol–gel–sol transition of a responsive peptide-hydrogel. Soft Matter 2020, 16, 7652–7658. [Google Scholar] [CrossRef]
- Roth-Konforti, M.E.; Comune, M.; Halperin-Sternfeld, M.; Grigoriants, I.; Shabat, D.; Adler-Abramovich, L. UV Light–Responsive Peptide-Based Supramolecular Hydrogel for Controlled Drug Delivery. Macrom. Rapid Commun. 2018, 39, 1800588. [Google Scholar] [CrossRef]
- Ji, L.; Ouyang, G.; Liu, M. Binary Supramolecular Gel of Achiral Azobenzene with a Chaperone Gelator: Chirality Transfer, Tuned Morphology, and Chiroptical Property. Langmuir 2017, 33, 12419–12426. [Google Scholar] [CrossRef]
- Chen, Z.; Lv, Z.; Qing, G.; Sun, T. Exploring the role of molecular chirality in the photo-responsiveness of dipeptide-based gels. J. Mater. Chem. B 2017, 5, 3163–3171. [Google Scholar] [CrossRef]
- Higashi, N.; Yoshikawa, R.; Koga, T. Photo-responsive azobenzene interactions promote hierarchical self-assembly of collagen triple-helical peptides to various higher-order structures. RSC Adv. 2020, 10, 15947–15954. [Google Scholar] [CrossRef] [Green Version]
- Stricker, L.; Fritz, E.-C.; Peterlechner, M.; Doltsinis, N.L.; Ravoo, B.J. Arylazopyrazoles as Light-Responsive Molecular Switches in Cyclodextrin-Based Supramolecular Systems. J. Am. Chem. Soc. 2016, 138, 4547–4554. [Google Scholar] [CrossRef] [PubMed]
- Browne, W.R.; Feringa, B.L. Making molecular machines work. Nat. Nanotechnol. 2006, 1, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Wegner, H.A. Molecular Switches. Second Edition. Edited by Ben L. Feringa and Wesley R. Browne. Angew. Chem. Int. Ed. 2012, 51, 2281. [Google Scholar] [CrossRef]
- Nalluri, S.K.M.; Voskuhl, J.; Bultema, J.B.; Boekema, E.J.; Ravoo, B.J. Light-Responsive Capture and Release of DNA in a Ternary Supramolecular Complex. Angew. Chem. Int. Ed. 2011, 50, 9747–9751. [Google Scholar] [CrossRef] [PubMed]
- Moratz, J.; Samanta, A.; Voskuhl, J.; Mohan Nalluri, S.K.; Ravoo, B.J. Light-Triggered Capture and Release of DNA and Proteins by Host–Guest Binding and Electrostatic Interaction. Chem. Eur. J. 2015, 21, 3271–3277. [Google Scholar] [CrossRef] [PubMed]
- Roling, O.; Stricker, L.; Voskuhl, J.; Lamping, S.; Ravoo, B.J. Supramolecular surface adhesion mediated by azobenzene polymer brushes. Chem. Commun. 2016, 52, 1964–1966. [Google Scholar] [CrossRef] [PubMed]
- Knie, C.; Utecht, M.; Zhao, F.; Kulla, H.; Kovalenko, S.; Brouwer, A.M.; Saalfrank, P.; Hecht, S.; Bléger, D. ortho-Fluoroazobenzenes: Visible Light Switches with Very Long-Lived Z Isomers. Chem. Eur. J. 2014, 20, 16492–16501. [Google Scholar] [CrossRef]
- Weston, C.E.; Richardson, R.D.; Haycock, P.R.; White, A.J.P.; Fuchter, M.J. Arylazopyrazoles: Azoheteroarene Photoswitches Offering Quantitative Isomerization and Long Thermal Half-Lives. J. Am. Chem. Soc. 2014, 136, 11878–11881. [Google Scholar] [CrossRef]
- Stricker, L.; Böckmann, M.; Kirse, T.M.; Doltsinis, N.L.; Ravoo, B.J. Arylazopyrazole Photoswitches in Aqueous Solution: Substituent Effects, Photophysical Properties, and Host–Guest Chemistry. Chem. Eur. J. 2018, 24, 8639–8647. [Google Scholar] [CrossRef]
- Kortekaas, L.; Browne, W.R. The evolution of spiropyran: Fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev. 2019, 48, 3406–3424. [Google Scholar] [CrossRef] [Green Version]
- Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148–184. [Google Scholar] [CrossRef] [PubMed]
- Moldenhauer, D.; Gröhn, F. Water-Soluble Spiropyrans with Inverse Photochromism and Their Photoresponsive Electrostatic Self-Assembly. Chem. Eur. J. 2017, 23, 3966–3978. [Google Scholar] [CrossRef] [PubMed]
- Parthenopoulos, D.A.; Rentzepis, P.M. Three-Dimensional Optical Storage Memory. Science 1989, 245, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Rosario, R.; Gust, D.; Hayes, M.; Jahnke, F.; Springer, J.; Garcia, A.A. Photon-Modulated Wettability Changes on Spiropyran-Coated Surfaces. Langmuir 2002, 18, 8062–8069. [Google Scholar] [CrossRef]
- Raymo, F.M.; Giordani, S. Signal Processing at the Molecular Level. J. Am. Chem. Soc. 2001, 123, 4651–4652. [Google Scholar] [CrossRef] [PubMed]
- Minkin, V.I. Photo-, Thermo-, Solvato-, and Electrochromic Spiroheterocyclic Compounds. Chem. Rev. 2004, 104, 2751–2776. [Google Scholar] [CrossRef]
- Wojtyk, J.T.C.; Wasey, A.; Xiao, N.-N.; Kazmaier, P.M.; Hoz, S.; Yu, C.; Lemieux, R.P.; Buncel, E. Elucidating the Mechanisms of Acidochromic Spiropyran-Merocyanine Interconversion. J. Phys. Chem. A 2007, 111, 2511–2516. [Google Scholar] [CrossRef]
- Wagner, K.; Byrne, R.; Zanoni, M.; Gambhir, S.; Dennany, L.; Breukers, R.; Higgins, M.; Wagner, P.; Diamond, D.; Wallace, G.G.; et al. A Multiswitchable Poly(terthiophene) Bearing a Spiropyran Functionality: Understanding Photo- and Electrochemical Control. J. Am. Chem. Soc. 2011, 133, 5453–5462. [Google Scholar] [CrossRef]
- Chen, L.; Wu, J.; Schmuck, C.; Tian, H. A switchable peptide sensor for real-time lysosomal tracking. Chem. Commun. 2014, 50, 6443–6446. [Google Scholar] [CrossRef]
- Keyvan Rad, J.; Balzade, Z.; Mahdavian, A.R. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. J. Photochem. Photobiol. C Photochem. Rev. 2022, 51, 100487. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Chen, Y.; Wang, Z.; He, Z.; He, J.; Zhao, H. Dynamic Anticounterfeiting Through Novel Photochromic Spiropyran-Based Switch@Ln-MOF Composites. ACS Appl. Mater. Interfaces 2022, 14, 21330–21339. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, Y.; Yang, D.; Zou, R.; Wu, J.; Tian, H. Synthesis and Antibacterial Activities of Antibacterial Peptides with a Spiropyran Fluorescence Probe. Sci. Rep. 2014, 4, 6860. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Iscen, A.; Sai, H.; Sato, K.; Sather, N.A.; Chin, S.M.; Álvarez, Z.; Palmer, L.C.; Schatz, G.C.; Stupp, S.I. Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nat. Mater. 2020, 19, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.N.; Li, C.Y.; Wang, H.; Hong, W.; Huang, F.; Zheng, Q.; Wu, Z.L. Reconstructable Gradient Structures and Reprogrammable 3D Deformations of Hydrogels with Coumarin Units as the Photolabile Crosslinks. Adv. Mater. 2021, 33, 2008057. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Hu, J.; Wang, H.; Huang, J.; Yu, Y.; Zhang, Q.; Cheng, Y. Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light. ACS Appl. Mater. Interfaces 2017, 9, 24511–24517. [Google Scholar] [CrossRef]
- Zheng, Y.; Micic, M.; Mello, S.V.; Mabrouki, M.; Andreopoulos, F.M.; Konka, V.; Pham, S.M.; Leblanc, R.M. PEG-Based Hydrogel Synthesis via the Photodimerization of Anthracene Groups. Macromolecules 2002, 35, 5228–5234. [Google Scholar] [CrossRef]
- Froimowicz, P.; Frey, H.; Landfester, K. Towards the Generation of Self-Healing Materials by Means of a Reversible Photo-induced Approach. Macromol. Rapid Commun. 2011, 32, 468–473. [Google Scholar] [CrossRef]
- Bullen, G.A.; Tucker, J.H.R.; Peacock, A.F.A. Exploiting anthracene photodimerization within peptides: Light induced sequence-selective DNA binding. Chem. Commun. 2015, 51, 8130–8133. [Google Scholar] [CrossRef]
- Pramanik, B.; Das, D. Aggregation-Induced Emission or Hydrolysis by Water? The Case of Schiff Bases in Aqueous Organic Solvents. J. Phys Chem. C 2018, 122, 3655–3661. [Google Scholar] [CrossRef]
- Gavel, P.K.; Dev, D.; Parmar, H.S.; Bhasin, S.; Das, A.K. Investigations of Peptide-Based Biocompatible Injectable Shape-Memory Hydrogels: Differential Biological Effects on Bacterial and Human Blood Cells. ACS Appl. Mater. Interfaces 2018, 10, 10729–10740. [Google Scholar] [CrossRef]
- Gavel, P.K.; Kumar, N.; Parmar, H.S.; Das, A.K. Evaluation of a Peptide-Based Coassembled Nanofibrous and Thixotropic Hydrogel for Dermal Wound Healing. ACS Appl. Bio Mater. 2020, 3, 3326–3336. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Revel, S.; Morris, K.; Adams, D.J. Energy transfer in self-assembled dipeptide hydrogels. Chem. Commun. 2010, 46, 4267–4269. [Google Scholar] [CrossRef] [PubMed]
- Kubota, R.; Nagao, K.; Tanaka, W.; Matsumura, R.; Aoyama, T.; Urayama, K.; Hamachi, I. Control of seed formation allows two distinct self-sorting patterns of supramolecular nanofibers. Nat. Commun. 2020, 11, 4100. [Google Scholar] [CrossRef] [PubMed]
- van Rossum, S.A.P.; Marta, T.-S.; van Esch, J.H.; Eelkema, R.; Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 2017, 46, 5519–5535. [Google Scholar] [CrossRef]
- Wang, G.; Liu, S. Strategies to Construct a Chemical-Fuel-Driven Self-Assembly. ChemSystemsChem 2020, 2, e1900046. [Google Scholar] [CrossRef]
- Cissé, N.; Kudernac, T. Light-Fuelled Self-Assembly of Cyclic Peptides into Supramolecular Tubules. ChemSystemsChem 2020, 2, e2000012. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pramanik, B.; Ahmed, S. Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators. Gels 2022, 8, 533. https://doi.org/10.3390/gels8090533
Pramanik B, Ahmed S. Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators. Gels. 2022; 8(9):533. https://doi.org/10.3390/gels8090533
Chicago/Turabian StylePramanik, Bapan, and Sahnawaz Ahmed. 2022. "Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators" Gels 8, no. 9: 533. https://doi.org/10.3390/gels8090533
APA StylePramanik, B., & Ahmed, S. (2022). Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators. Gels, 8(9), 533. https://doi.org/10.3390/gels8090533