In Vivo Effect of Resveratrol-Cellulose Aerogel Drug Delivery System to Relieve Inflammation on Sports Osteoarthritis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Materials
2.2. The Release Behavior of RLTA
2.3. Biosafety of RLTA
2.3.1. Changes in Body Weight of Rats
2.3.2. Blood Biochemical Indices of Rats
2.4. In Vivo Therapeutic Effect of RLTA in Osteoarthritis
2.4.1. Micro-CT and HE
2.4.2. Influence of IL-6 and TNF-α in Articular Fluid
2.4.3. Influence of Articular Cartilage Related Protein Expression
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of RLTA
4.3. Characterizations
4.4. Animal Experiments
4.5. Biochemical Indexes
4.6. HE Staining
4.7. Micro-Computed Tomography (Micro-CT)
4.8. Enzyme-Linked Immunosorbent Assay (ELISA)
4.9. Western Blot Analysis
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weifeng, L.; Jacob, K. Recent progress in cartilage lubrication. Adv. Mater. 2021, 33, 2005513. [Google Scholar]
- Garstang, S.V.; Stitik, T.P. Osteoarthritis: Epidemiology, risk factors, and pathophysiology. Am. J. Phys. Med. Rehabil. 2006, 85, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002, 50, 3337–3340. [Google Scholar] [CrossRef]
- De la Lastra, C.A.; Villegas, I. Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications. Mol. Nutr. Food Res. 2005, 49, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Shakibaei, M.; Csaki, C.; Nebrich, S.; Mobasheri, A. Resveratrol suppresses interleukin-1β-induced inflammatory signaling and apoptosis in human articular chondrocytes: Potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem. Pharmacol. 2008, 76, 1426–1439. [Google Scholar] [CrossRef]
- Yang, S.J.; Lim, Y.J.M. Resveratrol ameliorates hepatic metaflammation and inhibits NLRP3 inflammasome activation. Metab. Clin. Exp. 2014, 63, 693–701. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A.; Feng, X.; Hou, T.; Liu, K.; Liu, B.; Zhang, N. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue. Cell. Signal. 2016, 28, 1401–1411. [Google Scholar] [CrossRef]
- Smoliga, J.; Blanchard, O.J.M. Enhancing the delivery of resveratrol in humans: If low bioavailability is the problem, what is the solution. Molecules 2014, 19, 17154–17172. [Google Scholar] [CrossRef]
- Neves, A.R.; Lucio, M.; Lima, J.L.C.; Reis, S. Resveratrol in medicinal chemistry: A critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr. Med. Chem. 2012, 19, 1663–1681. [Google Scholar] [CrossRef]
- Ulker, Z.; Erkey, C. An emerging platform for drug delivery: Aerogel based systems. J. Control. Release 2014, 177, 51–63. [Google Scholar] [CrossRef]
- Andersson, J.; Rosenholm, J.; Areva, S.; Linden, M. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem. Mater. 2004, 16, 4160–4167. [Google Scholar] [CrossRef]
- Sher, P.; Ingavle, G.; Ponrathnam, S.; Pawar, A.P. Low density porous carrier drug adsorption and release study by Response surface methodology using different solvents. Int. J. Pharm. 2007, 331, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Du, A.; Wang, H.Q.; Zhou, B.; Zhang, C.; Wu, X.L.; Ge, Y.T.; Niu, T.T.; Ji, X.J.; Zhang, T.; Zhang, Z.H.; et al. Multifunctional silica nanotube aerogels inspired by polar bear hair for light management and thermal insulation. Chem. Mater. 2018, 30, 6849–6857. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Liu, Q.; Yang, L.N.; Zhu, R.R.; Yu, C.Z.; Wang, S.L. Rational design of multifunctional dendritic mesoporous silica nanoparticles to load curcumin and enhance efficacy for breast cancer therapy. ACS Appl. Mater. Interfaces 2016, 8, 26511–26523. [Google Scholar] [CrossRef] [PubMed]
- Li, H.M.; Guo, H.L.; Lei, C.; Liu, L.; Xu, L.Q.; Feng, Y.P.; Ke, J.; Fang, W.; Song, H.; Xu, C.; et al. Nanotherapy in joints: Increasing endogenous hyaluronan production by delivering hyaluronan synthase 2. Adv. Mater. 2019, 31, 1904535. [Google Scholar] [CrossRef]
- Valo, H.; Kovalainen, M.; Laaksonen, P.; Hakkinen, M.; Auriola, S.; Peltonen, L.; Linder, M.; Jarvinen, K.; Hirvonen, J.; Laaksonen, T. Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices-Enhanced stability and release. J. Control. Release 2011, 156, 390–397. [Google Scholar] [CrossRef]
- Qin, L.L.; Zhao, X.Y.; He, Y.W.; Wang, H.Q.; Wei, H.J.; Zhu, Q.; Zhang, T.; Qin, Y.; Du, A. Preparation, characterization, and in vitro evaluation of resveratrol-loaded cellulose aerogel. Materials 2020, 13, 1624. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, B.P.; Gomes, A.P.; Dai, H.; Li, J.; Case, A.W.; Considine, T.; Riera, T.V.; Lee, J.E.; Yen, E.S.; Lamming, D.W.; et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 2013, 339, 1216–1219. [Google Scholar] [CrossRef]
- Meng, Y.J.; Young, T.M.; Liu, P.Z.; Contescu, C.I.; Huang, B.; Wang, S.Q. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 2015, 22, 435–447. [Google Scholar] [CrossRef]
- Haniffa, M.A.C.M.; Ching, Y.C.; Chuah, C.H.; Ching, K.Y.; Nazri, N.; Abdullah, L.C.; Nai-Shang, L. Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose. Carbohydr. Polym. 2017, 173, 91–99. [Google Scholar] [CrossRef]
- Wang, M.; Shao, C.Y.; Zhou, S.K.; Yang, J.; Xu, F. Preparation of carbon aerogels from TEMPO-oxidized cellulose nanofibers for organic solvents absorption. RSC Adv. 2017, 7, 38220–38230. [Google Scholar] [CrossRef] [Green Version]
- Bourassa, P.; Kanakis, C.D.; Tarantilis, P.; Pollissiou, M.G.; Tajmir-Riahi, H.A. Resveratrol, genistein, and curcumin bind bovine serum albumin. J. Phys. Chem. B 2010, 114, 3348–3354. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wegiel, L.A.; Taylor, L.S.; Edgar, K.J. Stability and solution concentration enhancement of resveratrol by solid dispersion in cellulose derivative matrices. Cellulose 2013, 20, 1249–1260. [Google Scholar] [CrossRef]
- Fricsay, M.; Schonholzer, G. Histology of the epiphyseal cartilage of rachitic rats as a function of the calcium & phosphorus content of food & vitamin D3 intake. Pharm. Acta Helv. 1958, 33, 511–525. [Google Scholar] [PubMed]
- Shen, F.; Chen, S.J.; Dong, X.J.; Zhong, H.; Li, Y.T.; Cheng, G.F. Suppression of IL-8 gene transcription by resveratrol in phorbol ester treated human monocytic cells. J. Asian Nat. Prod. Res. 2003, 5, 151–157. [Google Scholar] [CrossRef]
- Valo, H.; Arola, S.; Laaksonen, P.; Torkkeli, M.; Peltonen, L.; Linder, M.B.; Serimaa, R.; Kuga, S.; Hirvonen, J.; Laaksonen, T. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci. 2013, 50, 69–77. [Google Scholar] [CrossRef]
- Bates, S.; Zografi, G.; Engers, D.; Morris, K.; Crowley, K.; Newman, A. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm. Res. 2006, 23, 2333–2349. [Google Scholar] [CrossRef]
- Wegiel, L.A.; Mauer, L.J.; Edgar, K.J.; Taylor, L.S. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-Impact of different polymers. J. Pharm. Sci. 2013, 102, 171–184. [Google Scholar] [CrossRef]
- Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS Pharmsci. 2011, 12, 279–286. [Google Scholar] [CrossRef]
- Hung, L.F.; Lai, J.H.; Lin, L.C.; Wang, S.J.; Hou, T.Y.; Chang, D.M.; Liang, C.C.T.; Ho, L.J. Retinoid acid inhibits IL-1-induced iNOS, COX-2 and chemokine production in human chondrocytes. Immunol. Investig. 2008, 37, 675–693. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K. The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery. Heat Mass Transf. 2006, 42, 939–953. [Google Scholar] [CrossRef]
- Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.N.; Lee, J.K.; Hong, S.H.; Kim, H.M. Herbkines increases physical stamina in mice. Biol. Pharm. Bull. 2004, 27, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Braun, H.J.; Gold, G.E. Diagnosis of osteoarthritis: Imaging. Bone 2012, 51, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzo, K.L.; Osorio, L.B.; Ferrazzo, V.A. CT images of a severe TMJ osteoarthritis and differential diagnosis with other joint disorders. Case Rep. Dent. 2013, 2013, 242685. [Google Scholar] [CrossRef]
- Arend, W.P.; Dayer, J.M. Cytokines and cytokine inhibitors or antagonists in rheumatoid-arthritis. Arthritis Rheum. 1990, 33, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Vangsness, C.T., Jr.; Burke, W.S.; Narvy, S.J.; MacPhee, R.D.; Fedenko, A.N. Human knee synovial fluid cytokines correlated with grade of knee osteoarthritis—A pilot study. Bull. NYU Hosp. Jt. Dis. 2011, 69, 122–127. [Google Scholar]
- Livshits, G.; Zhai, G.; Hart, D.J.; Kato, B.S.; Wang, H.Z.; Williams, F.M.K.; Spector, T.D. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis the chingford study. Arthritis Rheum. 2009, 60, 2037–2045. [Google Scholar] [CrossRef]
- Yoshizaki, T.; Milne, J.C.; Imamura, T.; Schenk, S.; Sonoda, N.; Babendure, J.L.; Lu, J.C.; Smith, J.J.; Jirousek, M.R.; Olefsky, J.M. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell. Biol. 2009, 29, 1363–1374. [Google Scholar] [CrossRef]
- Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-kappa B-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23, 2369–2380. [Google Scholar] [CrossRef]
- Stein, S.; Matter, C.M. Protective roles of SIRT1 in atherosclerosis. Cell Cycle 2011, 10, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.L.; Yang, J.Y.; Dong, Y.X.; Wang, J.M.; Cui, Y.H.; Ikeshima, T.; Zhao, Y.Q.; Wu, C.F. Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. Int. Immunopharmacol. 2005, 5, 185–193. [Google Scholar] [CrossRef] [PubMed]
Cellulose | C+R | Res | OA | Control | |
---|---|---|---|---|---|
ALB (g/L) | 28.53 ± 0.90 | 29.20 ± 1.71 | 25.13 ± 1.30 | 25.90 ± 3.80 | 30.13 ± 1.40 |
TP (g/L) | 63.07 ± 3.09 | 64.50 ± 4.71 | 61.43 ± 4.75 | 63.97 ± 3.94 | 63.07 ± 3.62 |
GLB (g/L) | 36.20 ± 2.30 | 38.40 ± 7.93 | 40.53 ± 2.46 | 35.30 ± 0.10 | 33.90 ± 38.50 |
A/G | 0.97 ± 0.07 | 0.76 ± 0.07 | 0.62 ± 0.01 | 0.73 ± 0.11 | 0.89 ± 0.91 |
STB(μmol/L) | 2.10 ± 0.83 | 1.15 ± 0.15 | 1.05 ± 0.05 | 3.05 ± 2.05 | 2.07 ± 0.79 |
AMS(U/L) | 513.00 ± 18.46 | 708.67 ± 39.47 | 909.67 ± 103.02 | 669.50 ± 184.50 | 772.00 ± 79.00 |
CK (U/L) | 520.00 ± 167.48 | 1217.00 ± 906.00 | 780.00 ± 845.49 | 1173.50 ± 816.50 | 397.00 ± 38.00 |
TG (mmol/L) | 0.69 ± 0.10 | 0.80 ± 0.18 | 0.54 ± 0.15 | 0.64 ± 0.34 | 0.61 ± 0.07 |
GLU (mmol/L) | 9.53 ± 3.03 | 12.72 ± 3.95 | 11.57 ± 1.24 | 11.03 ± 0.40 | 13.46 ± 1.58 |
Ca (mmol/L) | 0.61 ± 0.04 | 0.63 ± 0.01 | 0.63 ± 0.02 | 0.63 ± 0.04 | 0.64 ± 0.02 |
P (mmol/L) | 2.51 ± 0.18 | 2.22 ± 0.02 | 2.31 ± 0.09 | 2.30 ± 0.09 | 2.35 ± 0.18 |
BUN/Cr | 141.98 ± 16.50 | 195.92 ± 53.06 | 246.41 ± 31.68 | 199.10 ± 25.71 | 260.48 ± 22.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, N.; Xu, Z.; Zhao, X.; Yuan, M.; Pan, L.; Lu, T.; Du, A.; Qin, L. In Vivo Effect of Resveratrol-Cellulose Aerogel Drug Delivery System to Relieve Inflammation on Sports Osteoarthritis. Gels 2022, 8, 544. https://doi.org/10.3390/gels8090544
Cui N, Xu Z, Zhao X, Yuan M, Pan L, Lu T, Du A, Qin L. In Vivo Effect of Resveratrol-Cellulose Aerogel Drug Delivery System to Relieve Inflammation on Sports Osteoarthritis. Gels. 2022; 8(9):544. https://doi.org/10.3390/gels8090544
Chicago/Turabian StyleCui, Ningxin, Zhen Xu, Xinyu Zhao, Meng Yuan, Leiyu Pan, Tianfeng Lu, Ai Du, and Lili Qin. 2022. "In Vivo Effect of Resveratrol-Cellulose Aerogel Drug Delivery System to Relieve Inflammation on Sports Osteoarthritis" Gels 8, no. 9: 544. https://doi.org/10.3390/gels8090544
APA StyleCui, N., Xu, Z., Zhao, X., Yuan, M., Pan, L., Lu, T., Du, A., & Qin, L. (2022). In Vivo Effect of Resveratrol-Cellulose Aerogel Drug Delivery System to Relieve Inflammation on Sports Osteoarthritis. Gels, 8(9), 544. https://doi.org/10.3390/gels8090544