Some Remarkable Rheological and Conducting Properties of Hybrid PVC Thermoreversible Gels/Organogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rheological Properties
2.1.1. PVC/Oligo Phenylene Vinylene Systems
2.1.2. PVC/Triarylamine Trisamide Systems
2.2. Conductivity Properties of PVC/Trisamide Triarylamine Gels in Different Systems
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tylecote, R.F. A History of Metallurgy, 2nd ed.; The Institute of Materials: London, UK, 1992. [Google Scholar]
- Tong, L.; Mouritz, A.P.; Bannister, M.K. 3D Fibre Reinforced Polymer Composites; Elsevier: Oxford, UK, 2002. [Google Scholar]
- Lehn, J.M. Supramolecular Chemistry: Concepts and Perspectives; VCH-Weinheim: Hoboken, NJ, USA, 1995. [Google Scholar]
- Terech, P.; Weiss, R.G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 1997, 97, 3133–3159. [Google Scholar] [CrossRef] [PubMed]
- Terech, P.; Weiss, R.G. (Eds.) Molecular Gels: Materials with Self-Assembled Fibrillar Networks; Springer: Berlin/Heidelberg, 2006. [Google Scholar]
- Ajayaghosh, A.; Praveen, V.K. π-Organogels of Self-Assembled p-Phenylenevinylenes: Soft Materials with Distinct Size, Shape, and Functions. Acc. Chem. Res. 2007, 40, 644. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Li, J.L. Soft Fibrillar Materials: Fabrication and Applications; Wiley-VCH: Hoboken, NJ, USA, 2013. [Google Scholar]
- Babu, S.S.; Praveen, V.K.; Ajayaghosh, A. Functional π-Gelators and Their Applications. Chem. Rev. 2014, 114, 1973–2129. [Google Scholar] [CrossRef] [PubMed]
- Guenet, J.M. Organogels: Thermodynamics, Structure, Solvent Role and Properties; Springer: New York, NY, USA, 2016. [Google Scholar]
- Guenet, J.M. Hybrid Physical Gels from Polymers and Self-Assembled Systems: A Novel Path for Making Functional Materials. Gels 2018, 4, 35. [Google Scholar] [CrossRef]
- Bairi, P.; Chakraborty, P.; Shit, A.; Mondal, S.; Roy, B.; Nandi, A.K. A Co-assembled Gel of a Pyromellitic Dianhydride Derivativeand Polyaniline with Optoelectronic and Photovoltaic Properties. Langmuir 2014, 30, 7547. [Google Scholar] [CrossRef]
- Gnanou, Y.; Fontanille, M. Organic and Physical Chemistry of Polymers; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Ferry, J.D. Viscoelastic Properties of Polymers; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Winter, H.H.; Chambon, F. Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point. J. Rheol. 1986, 30, 367–383. [Google Scholar] [CrossRef]
- Collin, D.; Covis, R.; Allix, F.; Jamart-Grégoire, B.; Martinoty, P. Jamming transition in solutionscontain ing organogelator molecules of amino-acid type: Rheological and calorimetry experiments. Soft Matter 2013, 9, 2947. [Google Scholar] [CrossRef]
- Zoukal, Z.; Elhasri, S.; Carvalho, A.; Schmutz, M.; Collin, D.; Vakayil, P.K.; Ajayaghosh, A.; Guenet, J.-M. Hybrid Materials from Poly(vinyl chloride) and Organogels. ACS Appl. Polym. Mater. 2019, 1, 1203–1208. [Google Scholar] [CrossRef]
- Voigt, W. Über die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen Physik. 1889, 274, 573–587. [Google Scholar] [CrossRef]
- Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mechanik 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Takayanagi, M.; Harima, H.; Iwata, Y. Viscoelastic behavior of polymer blends and its comparison with model experiments. Mem. Fac. Eng. Kyushu Univ. 1963, 23, 1. [Google Scholar] [CrossRef]
- Zhang, J.; Rochas, C. Interactions between agarose and κ-carrageenans in aqueous solutions. Carbohydr. Polym. 1990, 13, 257. [Google Scholar] [CrossRef]
- Kiflemariam, B.; Collin, D.; Gavat, O.; Carvalho, A.; Moulin, E.; Giuseppone, N.; Guenet, J.M. Hybrid materials from tri-aryl amine organogelators and poly[vinyl chloride] networks. Polymer 2020, 207, 122814. [Google Scholar] [CrossRef]
- Talebpour, P.; Heinrich, B.; Gavat, O.; Carvalho, A.; Moulin, E.; Giuseppone, N.; Guenet, J.M. Modulation of the Molecular Structure of Tri-aryl Amine Fibrils in Hybrid Poly[vinyl chloride] Gel/Organogel Systems. Macromolecules 2021, 54, 8104. [Google Scholar] [CrossRef]
- Najeh, M.; Munch, J.P.; Guenet, J.M. Physical gels from PVC: Effect of solvent type. Macromolecules 1992, 25, 7018. [Google Scholar] [CrossRef]
- Jones, J.M.; Marques, C.M. Rigid polymer network models. J. Phys. 1990, 51, 1113. [Google Scholar] [CrossRef]
- Guenet, J.M.; Démé, B.; Gavat, O.; Moulin, E.; Giuseppone, N. Evidence by neutron diffraction of molecular compounds in triarylamine tris-amide organogels and in their hybrid thermoreversible gels with PVC. Soft Matter 2022, 18, 2851. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3, 3884–3890. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; McKenna, G.B. Considering viscoelastic micromechanics for the reinforcement of graphene polymer nanocomposites. ACS Macro Lett. 2012, 1, 388. [Google Scholar] [CrossRef]
- Moulin, E.; Niess, F.; Maaloum, M.; Buhler, E.; Nyrkova, I.; Giuseppone, N. The hierarchical self-assembly of charge nanocarriers: A highly cooperative process promoted by visible light. Angew. Chem. Int. Ed. 2010, 49, 6974. [Google Scholar] [CrossRef]
- Armao IV, J.J.; Maaloum, M.; Ellis, T.; Fuks, G.; Rawiso, M.; Moulin, E.; Giuseppone, N. Healable supramolecular polymers as organic metals. J. Am. Chem. Soc. 2014, 136, 11382. [Google Scholar] [CrossRef] [PubMed]
- Moulin, E.; Armao IV, J.J.; Giuseppone, N. Triaryl amine-based supramolecular polymers: Structure, dynamics, and functions. Acc. Chem. Res. 2019, 52, 975. [Google Scholar] [CrossRef] [PubMed]
- Osipenko, A.; Moulin, E.; Gavat, O.; Fuks, G.; Maaloum, M.; Koenis, M.A.J.; Bula, W.J.; Giuseppone, N. Temperature Control of Sequential Nucleation–Growth Mechanisms in Hierarchical Supramolecular Polymers. Chem. Eur. J. 2019, 25, 13008. [Google Scholar] [CrossRef]
- Ting Liang, T.; Collin, D.; Galerne, M.; Fuks, G.; Vargas Jentzsch, A.; Maaloum, M.; Carvalho, A.; Giuseppone, N.; Moulin, E. Covalently Trapped Triarylamine-Based Supramolecular Polymers. Chem. Eur. J. 2019, 25, 1434. [Google Scholar] [CrossRef] [PubMed]
- See for instance Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
Sample | As Prepared | After Irradiation |
---|---|---|
TATA-1.5%/TCE | 7.72 × 10−5 | 3.86 × 10−4 |
PVC5/TATA-1.5/TCE | 1.93 × 10−4 | 3.86 × 10−4 |
PVC10%/TATA-1.5/TCE | 5.79 × 10−5 | 3.86 × 10−4 |
TATA-1.5%/o-DCB | 1.35 × 10−5 | 1.54 × 10−5 |
PVC5/TATA-1.5%/o-DCB | 1.35 × 10−5 | 1.93 × 10−5 |
TATA-1.5%/m-DCB | 3.86 × 10−7 | 7.72 × 10−7 |
PVC5/TATA-1.5%/m-DCB | 5.79 × 10−6 | 5.79 × 10−6 |
TATA-1.5%/BrBz | 7.72 × 10−7 | 1.16 × 10−6 |
PVC5/TATA-1.5/BrBz | 1.93 × 10−6 | 1.93 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collin, D.; Viswanatha-Pillai, G.; Vargas Jentzsch, A.; Gavat, O.; Moulin, E.; Giuseppone, N.; Guenet, J.-M. Some Remarkable Rheological and Conducting Properties of Hybrid PVC Thermoreversible Gels/Organogels. Gels 2022, 8, 557. https://doi.org/10.3390/gels8090557
Collin D, Viswanatha-Pillai G, Vargas Jentzsch A, Gavat O, Moulin E, Giuseppone N, Guenet J-M. Some Remarkable Rheological and Conducting Properties of Hybrid PVC Thermoreversible Gels/Organogels. Gels. 2022; 8(9):557. https://doi.org/10.3390/gels8090557
Chicago/Turabian StyleCollin, Dominique, Ganesh Viswanatha-Pillai, Andreas Vargas Jentzsch, Odile Gavat, Emilie Moulin, Nicolas Giuseppone, and Jean-Michel Guenet. 2022. "Some Remarkable Rheological and Conducting Properties of Hybrid PVC Thermoreversible Gels/Organogels" Gels 8, no. 9: 557. https://doi.org/10.3390/gels8090557
APA StyleCollin, D., Viswanatha-Pillai, G., Vargas Jentzsch, A., Gavat, O., Moulin, E., Giuseppone, N., & Guenet, J. -M. (2022). Some Remarkable Rheological and Conducting Properties of Hybrid PVC Thermoreversible Gels/Organogels. Gels, 8(9), 557. https://doi.org/10.3390/gels8090557