l-Lysine-Based Gelators for the Formation of Gels in Water and Alcohol–Water Mixtures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gelation of Water
2.2. Gelation of Alcohol–Water Mixtures
2.3. Driving Forces for Gelation in Water
2.3.1. Hydrophobic Interaction
2.3.2. Hydrogen Bonding
2.4. Rheological Properties
2.5. Morphology of Gels
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Gelation Test
4.3. FT-IR Study
4.4. Fluorescence Study
4.5. Rheological Behavior Measurements
4.6. TEM Measurements
Author Contributions
Funding
Conflicts of Interest
References
- Draper, E.R.; Adams, D.J. Low-Molecular-Weight gels: The state of the art. Chem 2017, 3, 390–410. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Owh, C.; Chee, P.L.; Leow, W.R.; Liu, X.; Wu, Y.; Guo, P.; Loh, X.J.; Chen, X. Supramolecular hydrogels for antimicrobial therapy. Chem. Soc. Rev. 2018, 47, 6917–6929. [Google Scholar] [CrossRef] [PubMed]
- Mayr, J.; Saldías, C.; Díaz Díaz, D. Release of small bioactive molecules from physical gels. Chem. Soc. Rev. 2018, 47, 1484–1515. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, N.M.; Maitra, U. Supramolecular gels: Functions and uses. Chem. Soc. Rev. 2005, 34, 821–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials. Chem. Rev. 2015, 115, 13165–13307. [Google Scholar] [CrossRef] [PubMed]
- Valls, A.; Castillo, A.; Porcar, R.; Hietala, S.; Altava, B.; García-Verdugo, E.; Luis, S.V. Urea-Based Low-Molecular-Weight pseudopeptidic organogelators for the encapsulation and slow release of (R)-Limonene. J. Agric. Food Chem. 2020, 68, 7051–7061. [Google Scholar] [CrossRef]
- Luo, C.; Yang, B.; Zhou, Y.; Yang, J.; Han, F.; Baocai, X. Gelation properties and application based on amino acids gelators with four kinds of edible oils. Colloids Surf. A 2020, 585, 124184. [Google Scholar] [CrossRef]
- Adams, D.J. Dipeptide and tripeptide conjugates as Low-Molecular-Weight hydrogelators. Macromol. Biosci. 2011, 11, 160–173. [Google Scholar] [CrossRef]
- Restu, W.K.; Nishida, Y.; Kataoka, T.; Morimoto, M.; Ishida, K.; Mizuhata, M.; Maruyama, T. Palmitoylated amino acids as low-molecular-weight gelators for ionic liquids. Colloid Polym. Sci. 2017, 295, 1109–1116. [Google Scholar] [CrossRef] [Green Version]
- Samai, S.; Dey, J.; Biradha, K. Amino acid based low-molecular-weight tris(bis-amido) organogelators. Soft Matter 2011, 7, 2121–2126. [Google Scholar] [CrossRef]
- Delbecq, F.; Tsujimoto, K.; Ogue, Y.; Endo, H.; Kawai, T. N-stearoyl amino acid derivatives: Potent biomimetic hydro/organogelators as templates for preparation of gold nanoparticles. J. Colloid Interf. Sci. 2013, 390, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Z.; Wang, X.; Wei, W.; Chen, S.; Sui, Z. Gelation mechanism and microstructure of organogels formed with l-Valine dihydrazide derivatives. Colloid. Surf. A 2011, 384, 490–495. [Google Scholar] [CrossRef]
- Masahiro, S.; Tomoko, A.; Kenji, H. Low-molecular-weight gelators based on Nα-acetyl-Nε-dodecyl-L-lysine and their amphiphilic gelation properties. J. Colloid Interf. Sci. 2010, 341, 69–74. [Google Scholar]
- Suzuki, M.; Yumoto, M.; Shirai, H.; Hanabusa, K. Supramolecular gels formed by amphiphilic low-molecular-weight gelators of N alpha, N epsilon-diacyl-L-lysine derivatives. Chemistry 2008, 14, 2133–2144. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Hanabusa, K. L-Lysine-based low-molecular-weight gelators. Chem. Soc. Rev. 2009, 38, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Yumoto, M.; Shirai, H.; Hanabusa, K. A family of low-molecular-weight organogelators based on Nα,Nε-diacyl-l-lysine: Effect of alkyl chains on their organogelation behaviour. Tetrahedron 2008, 64, 10395–10400. [Google Scholar] [CrossRef]
- Suzuki, M.; Tanaka, K.; Kato, Y.; Hanabusa, K. Metal Oxide/TiO2 hybrid nanotubes fabricated through the organogel route. Gels 2017, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Nakajima, Y.; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Effects of Hydrogen Bonding and van der Waals Interactions on Organogelation Using Designed Low-Molecular-Weight Gelators and Gel Formation at Room Temperature. Langmuir 2003, 19, 8622–8624. [Google Scholar] [CrossRef]
- Kaplan, S.; Colak, M.; Hosgoren, H.; Pirinccioglu, N. Design of l-Lysine-Based organogelators and their applications in drug release processes. ACS Omega 2019, 4, 12342–12356. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K. New low-molecular-mass gelators based on l-lysine: Amphiphilic gelators and water-soluble organogelators. Helv. Chim. Acta 2004, 87, 1–10. [Google Scholar] [CrossRef]
- Suzuki, M.; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K. A family of low-molecular-weight hydrogelators based on L-lysine derivatives with a positively charged terminal group. Chem. Eur. J. 2003, 9, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Corradini, M.G.; Weiss, R.G.; Raghavan, S.R.; Rogers, M.A. To gel or not to gel: Correlating molecular gelation with solvent parameters. Chem. Soc. Rev. 2015, 44, 6035–6058. [Google Scholar] [CrossRef]
- Pal, A.; Dey, J. L-Cysteine-Derived ambidextrous gelators of aromatic solvents and Ethanol/Water mixtures. Langmuir 2013, 29, 2120–2127. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Dey, J. Water-Induced physical gelation of organic solvents by N-(n-Alkylcarbamoyl)-l-alanine amphiphiles. Langmuir 2011, 27, 3401–3408. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, J.; Zhang, G.; Xu, B. L-Lysine-Based gelators for the formation of oleogels in four vegetable oils. Molecules 2022, 27, 1369. [Google Scholar] [CrossRef] [PubMed]
- Minakuchi, N.; Hoe, K.; Yamaki, D.; Ten-No, S.; Nakashima, K.; Goto, M.; Mizuhata, M.; Maruyama, T. Versatile supramolecular gelators that can harden water, organic solvents and ionic liquids. Langmuir 2012, 28, 9259–9266. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Q.; Wang, S.; Zhang, G.; He, S.; Liu, C.; Wang, C.; Xu, B. Preparation, surface activities, and aggregation behaviors of N-acyl oligopeptide surfactants based on glycylglycine and glycylglycylglycine. Colloids Surf. A 2021, 623, 126743. [Google Scholar] [CrossRef]
- Li, X.; Saleh, A.S.M.; Wang, P.; Wang, Q.; Yang, S.; Zhu, M.; Duan, Y.; Xiao, Z. Characterization of organogel prepared from rice bran oil with cinnamic acid. Food Biophys. 2017, 12, 356–364. [Google Scholar] [CrossRef]
Solvents | Volume Ratio (v/v) | 2C12-Lys-Na | 2C14-Lys-Na | 2C12-Lys-K | 2C14-Lys-K |
---|---|---|---|---|---|
methanol–H2O | 3:1 | 46 (23) | 56 (26) | S | 33.9 (29) |
2:2 | 8 (19) | 8.2 (24) | S | 13.1 (27) | |
1.5:2.5 | 3.5 (17) | 6.4 (20) | 57.8 (25) | 10.3 (26) | |
1:3 | 5 (18) | 7.9 (21) | 24.5 (26) | 15.4 (25) | |
0.5:3.5 | 7.5 (19) | 18.6 (21) | 17.5 (23) | 35 (25) | |
ethanol–H2O | 3:1 | S | S | S | 22 (26) |
2:2 | 24.5 (20) | 4.4 (24) | S | 14 (23) | |
1.5:2.5 | 2 (17) | 2 (19) | S | 5.6 (22) | |
1:3 | 5 (18) | 9 (20) | 5 | 7.8 (21) | |
0.5:3.5 | 6 (18) | 22.4 (20) | 3.6 | 13.1 (21) | |
isopropanol–H2O | 3:1 | S | S | S | S |
2:2 | S | S | S | S | |
1.5:2.5 | S | 16.4 (21) | S | 33.4 (26) | |
1:3 | 29.5 (22) | 15.2 (21) | S | 51.7 (26) | |
0.5:3.5 | 11 (19) | 8 (20) | 31 | 15 (25) | |
t-butanol–H2O | 3:1 | S | S | S | S |
2:2 | S | S | S | S | |
1.5:2.5 | S | S | S | S | |
1:3 | S | 8.8 (22) | S | S | |
0.5:3.5 | S | 13 (23) | S | 34.6 (26) | |
0.1:3.9 | 22.5 (23) | 12.3 (21) | 33.1 | 18.1 (23) |
Compounds | Solvents | N–H Stretching Vibration | Amide I | Amide II |
---|---|---|---|---|
2C12-Lys-Na | powder 1 | 3327 | 1641 | 1540 |
H2O | 3326 | 1642 | 1555 | |
Methanol–H2O | 3318 | 1642 | 1557 | |
Ethanol–H2O | 3309 | 1643 | 1556 | |
Isopropanol–H2O | 3314 | 1642 | 1552 | |
t-butanol–H2O | 3316 | 1640 | 1548 | |
2C14-Lys-Na | powder 1 | 3328 | 1640 | 1542 |
Methanol–H2O | 3309 | 1639 | 1558 | |
Ethanol–H2O | 3306 | 1640 | 1560 | |
Isopropanol–H2O | 3308 | 1642 | 1553 | |
t-butanol–H2O | 3301 | 1639 | 1558 |
Solvents | Phase Transition Temperature (°C) | |||
---|---|---|---|---|
2C12-Lys-Na | 2C14-Lys-Na | 2C12-Lys-K | 2C14-Lys-K | |
H2O | 43.5 | - | 36.8 | 54.0 |
methanol–H2O | 35.9 | 36.7 | 31.2 | 37.0 |
ethanol–H2O | 41.1 | 45.4 | 34.4 | 45.9 |
isopropanol–H2O | 33.1 | 32.4 | 34.9 | 38.2 |
t-butanol–H2O | 37.7 | 38.5 | 31.0 | 32.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Y.; Zhang, J.; Zhang, G.; He, S.; Xu, B. l-Lysine-Based Gelators for the Formation of Gels in Water and Alcohol–Water Mixtures. Gels 2023, 9, 29. https://doi.org/10.3390/gels9010029
Miao Y, Zhang J, Zhang G, He S, Xu B. l-Lysine-Based Gelators for the Formation of Gels in Water and Alcohol–Water Mixtures. Gels. 2023; 9(1):29. https://doi.org/10.3390/gels9010029
Chicago/Turabian StyleMiao, Yue, Jieying Zhang, Guiju Zhang, Shan He, and Baocai Xu. 2023. "l-Lysine-Based Gelators for the Formation of Gels in Water and Alcohol–Water Mixtures" Gels 9, no. 1: 29. https://doi.org/10.3390/gels9010029
APA StyleMiao, Y., Zhang, J., Zhang, G., He, S., & Xu, B. (2023). l-Lysine-Based Gelators for the Formation of Gels in Water and Alcohol–Water Mixtures. Gels, 9(1), 29. https://doi.org/10.3390/gels9010029