Kaniwa (Chenopodium pallidicaule)’s Nutritional Composition and Its Applicability as an Elder-Friendly Food with Gelling Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fatty Acid Composition
2.2. Antioxidant Activity
2.2.1. Total Polyphenol Content
2.2.2. Total Flavonoid Content
2.2.3. DPPH Radical Scavenging Activity
2.2.4. ABTS Radical Scavenging Activity
2.2.5. Ferric Reducing Antioxidant Power
2.2.6. Superoxide Dismutase Activity
2.3. Antioxidant Activity
2.4. Hardness of Kaniwa Mousse
3. Conclusions
4. Materials and Methods
4.1. Sample Preparation
4.2. Analysis of Fatty Acid Composition
4.3. Analysis of Antioxidant Activity
4.3.1. Total Polyphenol Content
4.3.2. Total Flavonoid Content
4.3.3. DPPH Radical Scavenging Activity
4.3.4. ABTS Radical Scavenging Activity
4.3.5. Ferric-Reducing Antioxidant Power
4.3.6. Superoxide Dismutase Activity
4.4. Analysis of Anti-diabetic Activity
4.4.1. α-Amylase Inhibitory Activity
4.4.2. α-Glucosidase Inhibitory Activity
4.5. Manufacturing of Elder-Friendly Food
4.6. Hardness
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vera, E.P.; Alca, J.J.; Saravia, G.R.; Campioni, N.C.; Alpuy, I.J. Comparison of the lipid profile and tocopherol content of four Peruvian quinoa (Chenopodium quinoa Willd.) cultivars (‘Amarilla de Maranganí’, ‘Blanca de Juli’, INIA 415 ‘Roja Pasankalla’, INIA 420 ‘Negra Collana’) during germination. J. Cereal. Sci. 2019, 88, 132–137. [Google Scholar] [CrossRef]
- Repo-Carrasco, R.; Espinoza, C.; Jacobsen, S.E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev. Int. 2006, 19, 179–189. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; La-Cruz, A.A.; Alvarez, J.C.I.; Kallio, H. Chemical and functional characterization of kañiwa (Chenopodium pallidicaule) grain, extrudate and bran. Plant Foods Hum. Nutr. 2009, 64, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Thakur, P.; Kumar, K. Nutritional importance and processing aspects of pseudo-cereals. J. Agric. Eng. Food Technol. 2019, 6, 155–160. [Google Scholar]
- Kim, D.S.; Iida, F. Nutritional composition of Tonka bean (Dipteryx odorata) and its application as an elder-friendly food with gelling agent. Gels 2022, 8, 704. [Google Scholar] [CrossRef]
- Cheng, A. Review: Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Sci. 2018, 269, 136–142. [Google Scholar] [PubMed]
- Dietary Fat: Know Which to Choose. Available online: https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/in-depth/fat/art-20045550 (accessed on 8 April 2021).
- Assmann, K.E.; Adjibade, M.; Hercberg, S.; Galan, P.; Kesse-Guyot, E. Unsaturated fatty acid intakes during midlife are positively associated with later cognitive function in older adults with modulating effects of antioxidant supplementation. J. Nutr. 2018, 148, 1938–1945. [Google Scholar] [CrossRef]
- Omega-6 Fatty Acids. Available online: https://www.mountsinai.org/health-library/supplement/omega-6-fatty-acids (accessed on 14 December 2022).
- Kim, D.S.; Joo, N.M. Feasibility of elder-friendly food applications of sacha inchi according to cooking method: Focusing on analysis of antioxidative activity and brain neuron cell viability. Foods 2021, 10, 2948. [Google Scholar] [CrossRef]
- Ntambi, J.M.; Miyazaki, M. Recent insights into stearoyl-CoA desaturase-1. Curr. Opin. Lipidol. 2003, 14, 255–261. [Google Scholar] [CrossRef]
- Bourre, J.M. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. J. Nutr. Health Aging 2004, 8, 163–174. [Google Scholar]
- Omega-3 Fatty Acids. Available online: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/ (accessed on 18 July 2022).
- Vieira, S.A.; Mc-Clements, D.J.; Decker, E.A. Challenges of utilizing healthy fats in foods. Adv. Nutr. 2015, 6, 309S–317S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huamaní, F.; Tapia, M.; Portales, R.; Doroteo, V.; Ruiz, C.; Rojas, R. Proximate analysis, phenolics, betalains, and antioxidant activities of three ecotypes of Kaniwa (Chenopodium pallidicaule aellen) from Peru. Pharmacol. OnLine 2020, 1, 229–236. [Google Scholar]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Kumara, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Jin, L.; Xiao, P.; Lu, Y.; Bao, J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J. Cereal Sci. 2009, 49, 106–111. [Google Scholar] [CrossRef]
- Enciso-Roca, E.C.; Aguilar-Felices, E.J.; Tinco-Jayo, J.L.; Arroyo-Acevedo, J.L.; Herrera-Calderon, O. Biomolecules with antioxidant capacity from the seeds and sprouts of 20 varieties of Chenopodium quinoa Wild. (Quinoa). Plants 2021, 10, 2417. [Google Scholar] [CrossRef]
- Nakornriab, M.; Krasaetep, J. Phytochemicals and antioxidant activity of Thai rice flowers. J. Food Health Bioenviron. Sci. 2018, 11, 97–111. [Google Scholar]
- Złotek, U.; Gawlik-Dziki, U.; Dziki, D.; S’wieca, M.; Nowak, R.; Martinez, E. Influence of drying temperature on phenolic acids composition and antioxidant activity of sprouts and leaves of white and red quinoa. J. Chem. 2019, 2019, 7125169. [Google Scholar] [CrossRef] [Green Version]
- Hodžić, Z.; Pašalić, H.; Memisevic, A.; Srabovic, M.; Saletovic, M.; Poljakovic, M. The influence of total phenols content on antioxidant capacity in the whole grain extracts. Eur. J. Sci. Res. 2009, 28, 471–477. [Google Scholar]
- Coronado-Olano, J.; Repo-Carrasco-Valencia, R.; Reategui, O.; Toscano, E.; Valdez, E.; Zimic, M.; Best, I. Inhibitory activity against α-amylase and α-glucosidase by phenolic compounds of quinoa (Chenopodium quinoa Willd.) and cañihua (Chenopodium pallidicaule Aellen) from the Andean region of Peru. Pharmacogn. J. 2021, 13, 896–901. [Google Scholar] [CrossRef]
- Park, J.W.; Lee, S.; Yoo, B.; Nam, K. Effects of texture properties of semi-solid food on the sensory test for pharyngeal swallowing effort in the older adults. BMC Geriatr. 2020, 29, 493. [Google Scholar] [CrossRef] [PubMed]
- Thombare, N.; Jha, U.; Mishra, S.; Siddiqui, M.Z. Guar gum as a promising starting material for diverse applications: A review. In. J. Biol. Macromol. 2016, 88, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Glicksman, M. Utilization of natural polysaccharide gums in the food industry. Adv. Food Res. 1963, 11, 109–200. [Google Scholar]
- García-Ochoa, F.; Santos, V.E.; Casas, J.A.; Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef]
- How to Use Xanthan Gum. Available online: https://www.amazingfoodmadeeasy.com/info/modernist-ingredients/more/xanthan-gum (accessed on 1 January 2023).
- Kim, D.S.; Iida, F. Texture characteristics of Sea buckthorn (Hippophae rhamnoides) jelly for the elderly based on the gelling agent. Foods 2022, 26, 1892. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R. Nutritional value and bioactive compounds in Andean ancient grains. Proceedings 2020, 53, 1. [Google Scholar]
- Peñarrieta, J.M.; Alvarado, J.A.; Ǻkesson, B.; Bergenståhl, B. Total antioxidant capacity in Andean food species from Bolivia. Rev. Boliv. Química 2005, 22, 89–93. [Google Scholar]
- Boas, L.V.V.; Brandão, I.R.; Silva, D.M.; Oliveira-Santos, M.; Souza, K.R.D.; Alves, J.D. Antioxidant metabolism of Chenopodium quinoa Willd. under salt stress. Rev. Bras. Cienc. Agrar. 2016, 11, 281–288. [Google Scholar] [CrossRef]
- Kaniwa Pudding with Strawberries and Cream. Available online: https://www.herbazest.com/recipes/kaniwa-pudding-with-strawberries-and-cream (accessed on 1 October 2020).
Fatty Acid | Content (%) 1 | |
---|---|---|
Saturated fatty acid | Myristic acid (C14:0) | 0.74 ± 0.00 |
Pentadecylic acid (C15:0) | 0.19 ± 0.00 | |
Palmitic acid (C16:0) | 15.77 ± 0.35 | |
Margaric acid (C17:0) | 0.10 ± 0.00 | |
Stearic acid (C18:0) | 3.21 ± 0.15 | |
Arachidic acid (C20:0) | 1.02 ± 0.03 | |
Behenic acid (C22:0) | 1.49 ± 0.06 | |
Tricosanoic acid (C23:0) | 0.03 ± 0.00 | |
Lignoceric acid (C24:0) | 0.56 ± 0.03 | |
Total | 23.10 ± 0.62 | |
Unsaturated fatty acid | Palmitoleic acid (C16:1) | 0.96 ± 0.00 |
Heptadecenoic acid (C17:1) | 0.11 ± 0.00 | |
Vaccenic acid (C18:1n7c) | 0.47 ± 0.01 | |
Oleic acid (C18:1n9c) | 17.64 ± 0.19 | |
Linoleic acid (C18:2n6) | 49.02 ± 0.77 | |
α-Linolenic acid (C18:3n3) | 5.84 ± 0.00 | |
Eicosenoic acid (C20:1n9) | 1.63 ± 0.05 | |
Eicosadienoic acid (C20:2n6) | 0.05 ± 0.00 | |
Erucic acid (C22:1n9) | 1.18 ± 0.01 | |
Total | 76.90 ± 1.05 | |
Total fat | 6.09 ± 0.23 |
Physiological Activity | Status 1 | |
---|---|---|
Antioxidant activity | Total polyphenol content (mg GAE/100 g) | 186.54 ± 8.97 |
Total flavonoid content (mg CAT/100 g) | 249.82 ± 7.45 | |
FSC50 of DPPH radical scavenging activity (mg/mL) | 2.50 ± 0.11 | |
EC50 of ABTS radical scavenging activity (mg/mL) | 47.77 ± 2.13 | |
Ferric reducing antioxidant power (mol TE/100 g) | 0.88 ± 0.04 | |
Superoxide dismutase activity (U/g) | 193.20 ± 3.50 | |
Anti-diabetic activity | IC50 of α-amylase inhibitory activity (mg/mL) | 32.37 ± 1.52 |
IC50 of α-glucosidase inhibitory activity (mg/mL) | 7.84 ± 0.29 |
Concentration (%) | Hardness (N/m2) 1 | F-Value 2 (p-Value) | ||
---|---|---|---|---|
Guar Gum | Locust Bean Gum | Xanthan Gum | ||
1 | 13,953.67 ± 664.29 fA | 3730.33 ± 72.46 fB | 2878.67 ± 144.92 gC | 731.169 *** (0.000) |
3 | 44,479.00 ± 1284.08 eA | 9480.67 ± 245.08 eB | 6417.00 ± 298.68 fC | 2238.155 *** (0.000) |
5 | 50,600.00 ± 2455.20 eA | 28,940.33 ± 1240.83 dB | 12,738.67 ± 204.53 eC | 426.793 *** (0.000) |
7 | 71,805.67 ± 3142.66 dA | 39,700.00 ± 1473.09 cB | 15,471.33 ± 761.10 dC | 569.243 *** (0.000) |
9 | 112,701.67 ± 5563.86 cA | 45,338.00 ± 2019.85 bB | 23,500.00 ± 1000.00 cC | 539.943 *** (0.000) |
11 | 141,433.33 ± 6880.65 bA | 55,033.33 ± 2000.83 aB | 25,633.33 ± 1184.62 bC | 618.169 *** (0.000) |
13 | 151,033.33 ± 4528.06 aA | 57,558.67 ± 2796.59 aB | 28,366.67 ± 1096.97 aC | 1251.547 *** (0.000) |
F-value (p-value) | 489.888 *** (0.000) | 480.394 *** (0.000) | 464.420 *** (0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-S.; Iida, F. Kaniwa (Chenopodium pallidicaule)’s Nutritional Composition and Its Applicability as an Elder-Friendly Food with Gelling Agents. Gels 2023, 9, 61. https://doi.org/10.3390/gels9010061
Kim D-S, Iida F. Kaniwa (Chenopodium pallidicaule)’s Nutritional Composition and Its Applicability as an Elder-Friendly Food with Gelling Agents. Gels. 2023; 9(1):61. https://doi.org/10.3390/gels9010061
Chicago/Turabian StyleKim, Dah-Sol, and Fumiko Iida. 2023. "Kaniwa (Chenopodium pallidicaule)’s Nutritional Composition and Its Applicability as an Elder-Friendly Food with Gelling Agents" Gels 9, no. 1: 61. https://doi.org/10.3390/gels9010061
APA StyleKim, D. -S., & Iida, F. (2023). Kaniwa (Chenopodium pallidicaule)’s Nutritional Composition and Its Applicability as an Elder-Friendly Food with Gelling Agents. Gels, 9(1), 61. https://doi.org/10.3390/gels9010061