Current Trends in Aerogel Use in Heritage Buildings: Case Studies from the Aerogel Architecture Award 2021
Abstract
:1. Introduction
2. Realised Aerogel Projects
- i.
- The preservation of appearance in the case of cultural heritage;
- ii.
- The energy efficiency of the concept;
- iii.
- The originality of the solution.
2.1. Bauhaus-Universität Weimar
2.2. Neckarhalde Tübingen
2.3. Mühlestock Madiswil
3. Comments of the Jury Members
3.1. Bauhaus-Universität Weimar—Second Place, Shared
3.1.1. Volker Herzog
3.1.2. Beat Kämpfen
3.1.3. Ralf Kilian
3.1.4. Manfred Wehdorn
3.2. Neckarhalde—Second Place, Shared
3.2.1. Volker Herzog
3.2.2. Beat Kämpfen
3.2.3. Ralf Kilian
3.2.4. Manfred Wehdorn
3.3. Mühlestock—First Place
3.3.1. Volker Herzog
3.3.2. Beat Kämpfen
3.3.3. Ralf Kilian
3.3.4. Manfred Wehdorn
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koebel, M.; Rigacci, A.; Achard, P. Achard, Aerogel-based thermal superinsulation: An overview. J. Sol-Gel Sci. Technol. 2012, 63, 315–339. [Google Scholar] [CrossRef]
- Smith, D.S.; Alzina, A.; Bourret, J.; Nait-Ali, B.; Pennec, F.; Tessier-Doyen, N.; Otsu, K.; Matsubara, H.; Elser, P.; Gonzenbach, U.T. Thermal conductivity of porous materials. J. Mater. Res. 2013, 28, 2260–2272. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 2011, 43, 761–769. [Google Scholar] [CrossRef]
- Ganobjak, M.; Brunner, S.; Wernery, J. Aerogel materials for heritage buildings: Materials, properties and case studies. J. Cult. Herit. 2020, 42, 81–98. [Google Scholar] [CrossRef]
- Buratti, C.; Moretti, E. Glazing systems with silica aerogel for energy savings in buildings. Appl. Energy 2012, 98, 396–403. [Google Scholar] [CrossRef]
- Wernery, J.; Mancebo, F.; Malfait, W.J.; O’Connor, M.; Jelle, B.P. The economics of thermal superinsulation in buildings. Energy Build. 2021, 253, 111506. [Google Scholar] [CrossRef]
- Stahl, T.; Wakili, K.G.; Hartmeier, S.; Franov, E.; Niederberger, W.; Zimmermann, M. Temperature and moisture evolution beneath an aerogel based rendering applied to a historic building. J. Build. Eng. 2017, 12, 140–146. [Google Scholar] [CrossRef]
- Wakili, K.G.; Dworatzyk, C.; Sanner, M.; Sengespeick, A.; Paronen, M.; Stahl, T. Energy efficient retrofit of a prefabricated concrete panel building (Plattenbau) in Berlin by applying an aerogel based rendering to its façades. Energy Build. 2018, 165, 293–300. [Google Scholar] [CrossRef]
- Wakili, K.G.; Binder, B.; Zimmermann, M.; Tanner, C. Efficiency verification of a combination of high performance and conventional insulation layers in retrofitting a 130-year old building. Energy Build. 2014, 82, 237–242. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Wood, C.J.; Riffat, S.B. Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2014, 34, 273–299. [Google Scholar] [CrossRef]
- Lucchi, E.; Becherini, F.; Di Tuccio, M.C.; Troi, A.; Frick, J.; Roberti, F.; Hermann, C.; Fairnington, I.; Mezzasalma, G.; Pockelé, L.; et al. Thermal performance evaluation and comfort assessment of advanced aerogel as blown-in insulation for historic buildings. Build. Environ. 2017, 122, 258–268. [Google Scholar] [CrossRef]
- Stahl, T.; Brunner, S.; Zimmermann, M.; Wakili, K.G. Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications. Energy Build. 2012, 44, 114–117. [Google Scholar] [CrossRef]
- Buratti, C.; Moretti, E.; Belloni, E. Aerogel Plasters for Building Energy Efficiency. In Nano and Biotech Based Materials for Energy Building Efficiency; Torgal, F.P., Buratti, C., Kalaiselvam, S., Granqvist, C.-G., Ivanov, V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 17–40. [Google Scholar] [CrossRef]
- Maia, J.; Pedroso, M.; Ramos, N.M.M.; Flores-Colen, I.; Pereira, P.F.; Silva, L. Durability of a New Thermal Aerogel-Based Rendering System under Distinct Accelerated Aging Conditions. Materials 2021, 14, 5413. [Google Scholar] [CrossRef] [PubMed]
- Schuss, M.; Pont, U.; Mahdavi, A. Long-term experimental performance evaluation of aerogel insulation plaster. Energy Procedia. 2017, 132, 508–513. [Google Scholar] [CrossRef]
- Pedroso, M.; Flores-Colen, I.; Silvestre, J.D.; Gomes, M.G.; Hawreen, A.; Ball, R.J. Synergistic effect of fibres on the physical, mechanical, and microstructural properties of aerogel-based thermal insulating renders. Cem. Concr. Compos. 2023, 139, 105045. [Google Scholar] [CrossRef]
- Pedroso, M.; Silvestre, J.D.; Flores-Colen, I.; Gomes, M.G. Environmental impact of wall multilayer coating systems containing aerogel-based fibre-enhanced thermal renders. J. Build. Eng. 2023, 76, 107322. [Google Scholar] [CrossRef]
- Karim, A.N. Wetting and Drying of Aerogel-Based Coating Mortars in Swedish Climates, Chalmers University of Technology. 2023. Available online: https://research.chalmers.se/en/publication/537421 (accessed on 26 September 2023).
- Karim, A.N.; Johansson, P.; Kalagasidis, A.S. Knowledge gaps regarding the hygrothermal and long-term performance of aerogel-based coating mortars. Constr. Build. Mater. 2022, 314, 125602. [Google Scholar] [CrossRef]
- Ihara, T.; Jelle, B.P.; Gao, T.; Gustavsen, A. Aerogel granule aging driven by moisture and solar radiation. Energy Build. 2015, 103, 238–248. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Wood, C.J.; Riffat, S.B. Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings. Energy Build. 2014, 77, 28–39. [Google Scholar] [CrossRef]
- Marrone, P.; Asdrubali, F.; Venanzi, D.; Orsini, F.; Evangelisti, L.; Guattari, C.; De Lieto Vollaro, R.; Fontana, L.; Grazieschi, G.; Matteucci, P.; et al. On the Retrofit of Existing Buildings with Aerogel Panels: Energy, Environmental and Economic Issues. Energies 2021, 14, 1276. [Google Scholar] [CrossRef]
- Orsini, F.; Marrone, P.; Asdrubali, F.; Roncone, M.; Grazieschi, G. Aerogel insulation in building energy retrofit. Performance testing and cost analysis on a case study in Rome. Energy Rep. 2020, 6, 56–61. [Google Scholar] [CrossRef]
- Wakili, K.G.; Stahl, T.; Heiduk, E.; Schuss, M.; Vonbank, R.; Pont, U.; Sustr, C.; Wolosiuk, D.; Mahdavi, A. High Performance Aerogel Containing Plaster for Historic Buildings with Structured Façades. Energy Procedia 2015, 78, 949–954. [Google Scholar] [CrossRef]
- Stahl, T.; Wakili, K.G.; Heiduk, E. Stability Relevant Properties of an SiO2 Aerogel-Based Rendering and Its Application on Buildings. Sustainability 2021, 13, 10035. [Google Scholar] [CrossRef]
- Koh, C.H.; Schollbach, K.; Gauvin, F.; Brouwers, H.J.H. Aerogel composite for cavity wall rehabilitation in the Netherlands: Material characterization and thermal comfort assessment. Build. Environ. 2022, 224, 109535. [Google Scholar] [CrossRef]
- Projects-AAA2021-Results, (n.d.). Available online: https://www.empa.ch/web/aaa2021/results (accessed on 10 August 2023).
- Was ist ein Effizienzhaus? Sanieren und Förderung nutzen|KfW, (n.d.). Available online: https://www.kfw.de/inlandsfoerderung/Privatpersonen/Bestehende-Immobilie/Energieeffizient-sanieren/Das-Effizienzhaus/ (accessed on 25 September 2023).
- Thie, C.; Quallen, S.; Ibrahim, A.; Xing, T.; Johnson, B. Study of Energy Saving Using Silica Aerogel Insulation in a Residential Building. Gels 2023, 9, 86. [Google Scholar] [CrossRef]
- Streicher, K.N.; Berger, M.; Panos, E.; Narula, K.; Soini, M.C.; Patel, M.K. Optimal building retrofit pathways considering stock dynamics and climate change impacts. Energy Policy 2021, 152, 112220. [Google Scholar] [CrossRef]
Lettenstrasse, Zurich, Switzerland | Mariahilferstrasse, Vienna, Austria | Bauhaus-Universität, Weimar, Germany | Mühlestock, Madiswil, Switzerland | Neckarhalde, Tübingen, Germany |
---|---|---|---|---|
inside insulation | outside insulation | outside insulation | inside insulation | outside insulation |
40–60 mm aerogel render; 50 mm aerogel blanket for dormer windows | 50 mm aerogel render | 30 mm aerogel render | 50–70 mm aerogel render | 40 mm aerogel render |
1260 m2 of render; 50 m2 of blanket | 250 m2 | 537 m2 | 130 m2 | 355 m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganobjak, M.; Brunner, S.; Hofmann, J.; Klar, V.; Ledermann, M.; Herzog, V.; Kämpfen, B.; Kilian, R.; Wehdorn, M.; Wernery, J. Current Trends in Aerogel Use in Heritage Buildings: Case Studies from the Aerogel Architecture Award 2021. Gels 2023, 9, 814. https://doi.org/10.3390/gels9100814
Ganobjak M, Brunner S, Hofmann J, Klar V, Ledermann M, Herzog V, Kämpfen B, Kilian R, Wehdorn M, Wernery J. Current Trends in Aerogel Use in Heritage Buildings: Case Studies from the Aerogel Architecture Award 2021. Gels. 2023; 9(10):814. https://doi.org/10.3390/gels9100814
Chicago/Turabian StyleGanobjak, Michal, Samuel Brunner, Jörg Hofmann, Verena Klar, Michael Ledermann, Volker Herzog, Beat Kämpfen, Ralf Kilian, Manfred Wehdorn, and Jannis Wernery. 2023. "Current Trends in Aerogel Use in Heritage Buildings: Case Studies from the Aerogel Architecture Award 2021" Gels 9, no. 10: 814. https://doi.org/10.3390/gels9100814
APA StyleGanobjak, M., Brunner, S., Hofmann, J., Klar, V., Ledermann, M., Herzog, V., Kämpfen, B., Kilian, R., Wehdorn, M., & Wernery, J. (2023). Current Trends in Aerogel Use in Heritage Buildings: Case Studies from the Aerogel Architecture Award 2021. Gels, 9(10), 814. https://doi.org/10.3390/gels9100814