A Sterile, Injectable, and Robust Sericin Hydrogel Prepared by Degraded Sericin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Mechanism of Sericin Hydrogels
2.2. Gelation Kinetics of Sericin Hydrogels
2.3. The Micro-Architecture of Sericin Hydrogel
2.4. Swelling Characteristics of the Sericin Hydrogels
2.5. Degradability of the Sericin Hydrogels
2.6. Drug Release of Sericin Hydrogels
2.7. Secondary Structure and Crystallinity of Sericin Hydrogels
2.8. Mechanical Stability of Sericin Hydrogels
2.9. Syringe-Injectable Property of Sericin Hydrogels
2.10. Cells Adhesion and Proliferation of the Hydrogels
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Extraction of Sericin Solution
4.3. Free Amino Group Content Detection
4.4. Amino Acid Analysis
4.5. Preparation of Sterile Robust Sericin Hydrogel
4.6. Gelation Time of Sericin Hydrogel
4.7. Scanning Electron Microscopy (SEM)
4.8. Porosity Analyses
4.9. Evaluation of Swelling Behaviors and Degradation Dynamics
4.10. The Release of Drug from Sericin Hydrogels
4.11. Fourier Transform Infrared (FTIR) Spectroscopy and X-ray Diffraction
4.12. Mechanical Analysis
4.13. Syringe-Injectable Property
4.14. In Vitro Cell Test
4.15. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Shi, L.; Deng, Y.; Zou, M.Z.; Cai, B.; Song, Y.; Wang, Z.; Wang, L. Silk sericin-based materials for biomedical applications. Biomaterials 2022, 287, 121638. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Jiang, R.L.; Fang, A.; Zhao, Y.Y.; Wu, T.F.; Cao, X.T.; Liang, P.S.; Xia, D.G.; Zhang, G.Z. A highly transparent, elastic, injectable sericin hydrogel induced by ultrasound. Polym. Test. 2019, 77, 105890. [Google Scholar] [CrossRef]
- Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 2012, 336, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Kunwar, P.; Soman, P. Hydrogel-based diffractive optical elements (hDOEs) using rapid digital photopatterning. Adv. Opt. Mater. 2021, 9, 2001217. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.Y.; Kim, J.S.; Choi, B.R.; Lee, K.; Lee, H. Hydrogel based biosensors for in vitro diagnostics of biochemicals, proteins, and genes. Adv. Healthc. Mater. 2017, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.X.; Liu, S.Y.; Zhu, W.K.; Li, Y.R.; Huang, L.; Zhang, G.Z.; Zhang, Y.S. Synthesis, characterization, properties, and biomedical application of chitosan-based hydrogels. Polymers 2023, 15, 2482. [Google Scholar] [CrossRef] [PubMed]
- Kar, P.K.; Vijayan, K.; Mohandas, T.P.; Nair, C.V.; Saratchandra, B.; Thangavelu, K. Genetic variability and genetic structure of wild and semi-domestic populations of tasar silkworm (Antheraea mylitta) ecorace Daba as revealed through ISSR markers. Genetica 2005, 125, 173–183. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.S.; Zhang, J.X.; Huang, L.; Liu, J.; Li, Y.K.; Zhang, G.Z.; Kundu, S.C.; Wang, L. Exploring natural silk protein sericin for regenerative medicine: An injectable, photoluminescent, cell-adhesive 3D hydrogel. Sci. Rep. 2014, 4, 7064. [Google Scholar] [CrossRef]
- Li, Y.W.; Wang, S.S.; Li, Y.R.; Zhang, G.Z.; Wu, T.F.; Wei, Y.K.; Cao, X.Y.; Yan, H.; Liang, P.S.; Yan, Z.H.; et al. Resveratrol loaded native silk fiber-sericin hydrogel double interpenetrating bioactive wound dressing facilitates full-thickness skin wound healing. Biomed. Mater. 2023, 18, 045007. [Google Scholar] [CrossRef]
- Li, Y.R.; Wei, Y.; Zhang, G.Z.; Zhang, Y.S. Sericin from fibroin-deficient silkworms served as a promising resource for biomedicine. Polymers 2023, 15, 2941. [Google Scholar] [CrossRef]
- Cao, T.T.; Zhang, Y.Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. C 2016, 61, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Kundu, B.; Kundu, S.C. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials 2012, 33, 7456–7467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.S.; Dong, P.P.; Chen, L.; Wang, X.Z.; Lu, S. Genipin-cross-linked thermosensitive silk sericin/poly(N-isopropylacrylamide) hydrogels for cell proliferation and rapid detachment. J. Biomed. Mater. Res. A 2014, 102, 76–83. [Google Scholar] [CrossRef]
- Sapru, S.; Das, S.; Mandal, M.; Ghosh, A.K.; Kundu, S.C. Nonmulberry silk protein sericin blend hydrogels for skin tissue regeneration-in vitro and in vivo. Int. J. Biol. Macromol. 2019, 137, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Tong, X.L.; Huang, Y.M.; Zhou, X.; Yang, C.H.; Chen, J.C.; Dai, F.Y.; Xiao, B. Oral Administration of hydrogel-embedding silk sericin alleviates ulcerative colitis through wound healing, anti-inflammation, and anti-oxidation. ACS Biomater. Sci. Eng. 2019, 5, 6231–6242. [Google Scholar] [CrossRef] [PubMed]
- Pankongadisak, P.; Suwantong, O. The potential use of thermosensitive chitosan/silk sericin hydrogels loaded with longan seed extract for bone tissue engineering. RSC Adv. 2018, 8, 40219–40231. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.J.; Liu, D.C.; Yu, Y.H.; Tang, H. Development of gelatin-silk sericin incorporated with poly(vinyl alcohol) hydrogel-based nanocomposite for articular cartilage defects in rat knee joint repair. J. Biomed. Nanotechnol. 2021, 17, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Yamdej, R.; Pangza, K.; Srichana, T.; Aramwit, P. Superior physicochemical and biological properties of poly(vinyl alcohol)/sericin hydrogels fabricated by a non-toxic gamma-irradiation technique. J. Bioact. Compat. Polym. 2017, 32, 32–44. [Google Scholar] [CrossRef]
- Tao, G.; Cai, R.; Wang, Y.J.; Zuo, H.; He, H.W. Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing. Mater. Sci. Eng. C 2021, 119, 111597. [Google Scholar] [CrossRef]
- Jiang, L.B.; Ding, S.L.; Ding, W.; Su, D.H.; Zhang, F.X.; Zhang, T.W.; Yin, X.F.; Xiao, L.; Li, Y.L.; Yuan, F.L.; et al. Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration. Chem. Eng. J. 2021, 418, 129323. [Google Scholar] [CrossRef]
- Tyeb, S.; Kumar, N.; Kumar, A.; Verma, V. Flexible agar-sericin hydrogel film dressing for chronic wounds. Carbohydr. Polym. 2018, 200, 572–582. [Google Scholar] [CrossRef]
- Griffanti, G.; Jiang, W.; Nazhat, S.N. Bioinspired mineralization of a functionalized injectable dense collagen hydrogel through silk sericin incorporation. Biomater. Sci. 2019, 7, 1064–1077. [Google Scholar] [CrossRef] [PubMed]
- Tyeb, S.; Shiekh, P.A.; Verma, V.; Kumar, A. Adipose-derived stem cells (adscs) loaded gelatin-sericin-laminin cryogels for tissue regeneration in diabetic wounds. Biomacromolecules 2020, 21, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, H.; Nakajima, K.; Takabayashi, C. Preparation of elastic silk sericin hydrogel. Biosci. Biotechnol. Biochem. 2005, 69, 845–847. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, C.; Zhang, J.X.; Sun, N.; Huang, K.; Li, H.; Wang, Z.; Huang, K.; Wang, L. An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction. Acta. Biomater. 2016, 41, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Zhao, Y.Y.; He, X.B.; Fang, A.; Jiang, R.L.; Wu, T.F.; Chen, H.G.; Cao, X.T.; Liang, P.S.; Xia, D.G.; et al. A sterile self-assembled sericin hydrogel via a simple two-step process. Polym. Test. 2019, 80, 106016. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Wu, T.F.; Shen, C.Y.; Xu, G.; Chen, H.G.; Yan, H.; Xiong, M.; Zhang, G.Z. A robust sericin hydrogel formed by a native sericin from silkworm bodies. Fibers Polym. 2022, 23, 1826–1833. [Google Scholar] [CrossRef]
- Chirila, T.V.; Suzuki, S.; McKirdy, N.C. Further development of silk sericin as a biomaterial: Comparative investigation of the procedures for its isolation from Bombyx mori silk cocoons. Prog. Biomater. 2016, 5, 135–145. [Google Scholar] [CrossRef]
- Yu, Y.B.; Xu, S.; Li, S.M.; Pan, H. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: A review. Biomater. Sci. 2021, 9, 1583–1597. [Google Scholar] [CrossRef]
- Chyzy, A.; Plonska-Brzezinska, M.E. Hydrogel properties and their impact on regenerative medicine and tissue engineering. Molecules 2020, 25, 5795. [Google Scholar] [CrossRef]
- Wang, F.F.; Li, Z.; Guo, J.Q.; Liu, L.; Fu, H.; Yao, J.M.; Krucinska, I.; Draczynski, Z. Highly strong, tough, and stretchable conductive hydrogels based on silk sericin-mediated multiple physical interactions for flexible sensors. ACS Appl. Polym. Mater. 2022, 4, 618–626. [Google Scholar] [CrossRef]
- Li, Y.W.; Wu, T.F.; Zhang, G.Z.; Fang, A.; Li, Y.Y.; Wang, S.S.; Yan, H.; Liang, P.S.; Lian, J.L.; Zhang, Y.S. A native sericin wound dressing spun directly from silkworms enhances wound healing. Colloids Surf. B 2023, 225, 113228. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.; Carvalho, D.D.; Valente, V.; Rubio, J.; Faria, P.E.; Silva-Caldeira, P.P. Concomitant and controlled release of furazolidone and bismuth(III) incorporated in a cross-linked sodium alginate-carboxymethyl cellulose hydrogel. Int. J. Biol. Macromol. 2018, 216, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.; Chen, J.; Collette, A.L.; Kim, U.J.; Altman, G.H.; Cebe, P.; Kaplan, D.L. Mechanisms of silk fibroin sol-gel transitions. J. Phys. Chem. B 2006, 110, 21630–21638. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.C.; Prasannan, A.; Hong, P.D.; Chiang, M.Y. Silk-sericin degummed wastewater solution-derived and nitrogen enriched porous carbon nanosheets for robust biological imaging of stem cells. Int. J. Biol. Macromol. 2018, 107, 2122–2130. [Google Scholar] [CrossRef] [PubMed]
- Dash, R.; Ghosh, S.K.; Kaplan, D.L.; Kundu, S.C. Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comp. Biochem. Physiol. Part B 2007, 147, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Pelton, J.T.; Mclean, L.R. Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem. 2000, 277, 167–176. [Google Scholar] [CrossRef]
- Ruggeri, F.S.; Longo, G.; Faggiano, S.; Lipiec, E.; Pastore, A.; Dietler, G. Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nat. Commun. 2015, 6, 7831. [Google Scholar] [CrossRef]
- Boulet-Audet, M.; Vollrath, F.; Holland, C. Identification and classification of silks using infrared spectroscopy. J. Exp. Biol. 2015, 218, 3138–3149. [Google Scholar] [CrossRef]
- Mathew, A.P.; Uthaman, S.; Cho, K.H.; Cho, C.S.; Park, I.K. Injectable hydrogels for delivering biotherapeutic molecules. Int. J. Biol. Macromo. 2018, 110, 17–29. [Google Scholar] [CrossRef]
- Mohammadi, M.; Karimi, M.; Malaekeh-Nikouei, B.; Torkashvand, M.; Alibolandi, M. Hybrid in situ- forming injectable hydrogels for local cancer therapy. Int. J. Pharm. 2022, 616, 121534. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.H.; Arias, I.; Quesada, I.; D’Aniello, S.; Errico, F.; Fiore, M.M.D.; D’Aniello, A. A fast and sensitive method for measuring picomole levels of total free amino acids in very small amounts of biological tissues. Amino Acids 2001, 20, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Chen, H.G.; Li, Y.L.; Fang, A.; Wu, T.F.; Shen, C.Y.; Zhao, Y.Y.; Zhang, G.Z. A transparent sericin-polyacrylamide interpenetrating network hydrogel as visualized dressing material. Polym. Test. 2020, 87, 106517. [Google Scholar] [CrossRef]
- Nishida, A.; Yamada, M.; Kanazawa, T.; Takashima, Y.; Ouchi, K.; Okada, H. Sustained-release of protein from biodegradable sericin film, gel and sponge. Int. J. Pharm. 2011, 407, 44–52. [Google Scholar] [CrossRef] [PubMed]
Free Amino Groups (in mol/kg)/Amino Acids (in Mole %) | Sericin Isolated from Jingsong A | Sericin Isolated from 180 Nd-s |
---|---|---|
Free amino groups | 0.09 | 1.05 |
Serine | 32.81 | 31.93 |
Aspartic acid | 15.89 | 15.47 |
Glycine | 10.28 | 9.68 |
Threonine | 9.13 | 8.86 |
Glutamic acid | 6.27 | 7.43 |
Tyrosine | 5.03 | 5.64 |
Arginine | 4.92 | 4.73 |
Lysine | 3.49 | 3.62 |
Alanine | 3.26 | 3.40 |
Valine | 3.15 | 3.31 |
Histidine | 1.79 | 1.72 |
Leucine | 1.64 | 1.70 |
Isoleucine | 0.87 | 0.87 |
Proline | 0.73 | 0.81 |
Phenylalanine | 0.63 | 0.71 |
Methionine | 0.11 | 0.11 |
Cystine | not detected | not detected |
Hydrogels | 4% Sericin Hydrogel | 8% Sericin Hydrogel | 10% Sericin Hydrogel | 12% Sericin Hydrogel |
---|---|---|---|---|
Pore size (μm) | 4.9 ± 0.6 | 6.0 ± 1.9 | 6.7 ± 0.8 | 7.1 ± 1.5 |
Porosity (%) | 79 ± 5 | 70 ± 4 | 67 ± 1 | 66 ± 3 |
Pore wall thickness (μm) | 0.31 ± 0.1 | 0.68 ± 0.2 | 0.96 ± 0.3 | 1.39 ± 0.4 |
Secondary Structure | A-Helix | Random Coil | β-Sheet | β-Turn | |
---|---|---|---|---|---|
Ratio (%) | Sericin powder | 21.95 | 30.50 | 25.74 | 21.81 |
Sericin hydrogel | 25.74 | 26.46 | 32.85 | 14.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, S.; Li, Y.; Li, X.; Du, Z.; Liu, S.; Song, Y.; Li, Y.; Zhang, G. A Sterile, Injectable, and Robust Sericin Hydrogel Prepared by Degraded Sericin. Gels 2023, 9, 948. https://doi.org/10.3390/gels9120948
Zhang Y, Wang S, Li Y, Li X, Du Z, Liu S, Song Y, Li Y, Zhang G. A Sterile, Injectable, and Robust Sericin Hydrogel Prepared by Degraded Sericin. Gels. 2023; 9(12):948. https://doi.org/10.3390/gels9120948
Chicago/Turabian StyleZhang, Yeshun, Susu Wang, Yurong Li, Xiang Li, Zhanyan Du, Siyu Liu, Yushuo Song, Yanyan Li, and Guozheng Zhang. 2023. "A Sterile, Injectable, and Robust Sericin Hydrogel Prepared by Degraded Sericin" Gels 9, no. 12: 948. https://doi.org/10.3390/gels9120948
APA StyleZhang, Y., Wang, S., Li, Y., Li, X., Du, Z., Liu, S., Song, Y., Li, Y., & Zhang, G. (2023). A Sterile, Injectable, and Robust Sericin Hydrogel Prepared by Degraded Sericin. Gels, 9(12), 948. https://doi.org/10.3390/gels9120948