Review of the Perspectives and Study of Thermo-Responsive Polymer Gels and Applications in Oil-Based Drilling Fluids
Abstract
:1. Introduction
2. The Classification of Thermo-Responsive Polymers
2.1. The Mechanism of Thermo-Responsive Polymer Phase Transition
2.2. Thermo-Responsive Polymers with Lower Critical Solution Temperature
2.3. Thermo-Responsive Polymers with Upper Critical Solution Temperature
3. The Test Methods of the Phase Transition and the Control of Transition Temperature with a Thermo-Responsive Polymer
3.1. Phase Transition Temperature Testing Methods
3.1.1. Differential Scanning Calorimetry
3.1.2. Swelling Degree Method
3.1.3. Dynamic Light Scattering
3.1.4. Fluorescence Spectroscopy
3.1.5. Turbidity Method
3.1.6. Viscosity Measurement Method
3.2. The Methods for Controlling the Phase Transition Temperature of Thermally Responsive Polymers
3.2.1. Controlling the Molecular Weight of Polymers
3.2.2. Controlling the Concentration of Polymers
3.2.3. Controlling the Degree of Polymer Crosslinking
3.2.4. Introduction of Copolymerization Monomers
3.2.5. Introduction of Additives
4. Application of Thermo-Responsive Polymers in Oil and Gas Extraction
4.1. Application in Drilling Fluids
4.1.1. Application in Water-Based Drilling Fluid
4.1.2. The Application in Oil-Based Drilling Fluids
4.2. Applications in Oil Recovery
4.2.1. Profile Control and Water Plugging
4.2.2. Prevention and Control of Steam Channeling
4.3. Application in Oil–Water Separation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huh, K.M.; Kang, H.C.; Lee, Y.J.; Bae, Y.H. pH-sensitive polymers for drug delivery. Macromol. Res. 2012, 20, 224–233. [Google Scholar] [CrossRef]
- Shan, P.; Lu, Y.; Lu, W.; Yin, X.; Liu, H.; Li, D.; Lian, X.; Wang, W.; Li, Z.; Li, Z. Biodegradable and Light-Responsive Polymeric Nanoparticles for Environmentally Safe Herbicide Delivery. ACS Appl. Mater. Interfaces 2022, 14, 43759–43770. [Google Scholar] [CrossRef] [PubMed]
- Vryzas, Z.; Kelessidis, V.C.; Bowman, M.B.; Nalbantian, L.; Zaspalis, V.; Mahmoud, O.; Nasr-El-Din, H.A. Smart Magnetic Drilling Fluid With In-Situ Rheological Controllability Using Fe3O4 Nanoparticles. In Proceedings of the SPE Middle East Oil & Gas Show and Conference, Manama, Bahrain, 6–9 March 2017. [Google Scholar]
- Li, Y.; Sun, Y.; Xiao, Y.; Gao, G.; Liu, S.; Zhang, J.; Fu, J. Electric Field Actuation of Tough Electroactive Hydrogels Cross-Linked by Functional Triblock Copolymer Micelles. ACS Appl. Mater. Interfaces 2016, 8, 26326–26331. [Google Scholar] [CrossRef]
- Vasile, A.; Scurtu, M.; Munteanu, C.; Teodorescu, M.; Anastasescu, M.; Balint, I. Synthesis of well-defined Pt nanoparticles with controlled morphology in the presence of new types of thermosensitive polymers. Process Saf. Environ. Prot. 2017, 108, 144–152. [Google Scholar] [CrossRef]
- Wang, L.S.; Chow, P.Y.; Phan, T.T.; Lim, I.J.; Yang, Y.Y. Fabrication and Characterization of Nanostructured and Thermosensitive Polymer Membranes for Wound Healing and Cell Grafting. Adv. Funct. Mater. 2006, 16, 1171–1178. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Jouyandeh, M.; Ganjali, M.R.; Hadavand, B.S.; Mozafari, M.; Sheiko, S.S.; Vatankhah-Varnoosfaderani, M.; Gutiérrez, T.J.; Saeb, M.R. Thermo-sensitive polymers in medicine: A review. Eur. Polym. J. 2019, 117, 402–423. [Google Scholar] [CrossRef]
- Hao, L.; Yegin, C.; Talari, J.V.; Oh, J.K.; Zhang, M.; Sari, M.M.; Zhang, L.; Min, Y.; Akbulut, M.; Jiang, B. Thermo-responsive gels based on supramolecular assembly of an amidoamine and citric acid. Soft Matter 2018, 14, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Fraylich, M.; Saunders, B.R. Thermoresponsive copolymers: From fundamental studies to applications. Colloid Polym. Sci. 2009, 287, 627–643. [Google Scholar] [CrossRef]
- Cabane, E.; Zhang, X.; Langowska, K.; Palivan, C.G.; Meier, W. Stimuli-Responsive Polymers and Their Applications in Nanomedicine. Biointerphases 2012, 7, 9. [Google Scholar] [CrossRef]
- Kojima, H. Studies on the phase transition of hydrogels and aqueous solutions of thermosensitive polymers. Polym. J. 2018, 50, 411–418. [Google Scholar] [CrossRef]
- Ko, C.-H.; Claude, K.-L.; Niebuur, B.-J.; Jung, F.A.; Kang, J.-J.; Schanzenbach, D.; Frielinghaus, H.; Barnsley, L.C.; Wu, B.; Pipich, V.; et al. Temperature-Dependent Phase Behavior of the Thermoresponsive Polymer Poly(N-isopropylmethacrylamide) in an Aqueous Solution. Macromolecules 2020, 53, 6816–6827. [Google Scholar] [CrossRef]
- Costa, M.C.M.; Silva, S.M.C.; Antunes, F.E. Adjusting the low critical solution temperature of poly(N-isopropyl acrylamide) solutions by salts, ionic surfactants and solvents: A rheological study. J. Mol. Liq. 2015, 210, 113–118. [Google Scholar] [CrossRef]
- Lu, J.; Yan, F.; Texter, J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci. 2009, 34, 431–448. [Google Scholar] [CrossRef]
- Dimitrov, I.; Trzebicka, B.; Müller, A.H.E.; Dworak, A.; Tsvetanov, C.B. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog. Polym. Sci. 2007, 32, 1275–1343. [Google Scholar] [CrossRef]
- Gong, C.; Qi, T.; Wei, X.; Qu, Y.; Wu, Q.; Luo, F.; Qian, Z. Thermosensitive Polymeric Hydrogels as Drug Delivery Systems. Curr. Med. Chem. 2012, 20, 79–94. [Google Scholar] [CrossRef]
- Xue, Y.; Wu, M.; Liu, Z.; Song, J.; Luo, S.; Li, H.; Li, Y.; Jin, L.; Guan, B.; Lin, M.; et al. In vitro and in vivo evaluation of chitosan scaffolds combined with simvastatin-loaded nanoparticles for guided bone regeneration. J. Mater. Sci. Mater. Med. 2019, 30, 47. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, S.; Fu, S.; Zhao, Y. A Near-Infrared Light-Responsive Hybrid Hydrogel Based on UCST Triblock Copolymer and Gold Nanorods. Polymers 2017, 9, 238. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; An, J.; Xu, K.; Chen, T.; Muller-Buschbaum, P.; Zhong, Q. Intelligent Textiles with Comfort Regulation and Inhibition of Bacterial Adhesion Realized by Cross-Linking Poly(n-isopropylacrylamide-co-ethylene glycol methacrylate) to Cotton Fabrics. ACS Appl. Mater. Interfaces 2017, 9, 13647–13656. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Hu, J.; Jiao, J.; Li, J. Smart moisture management and thermoregulation properties of stimuli-responsive cotton modified with polymer brushes. RSC Adv. 2014, 4, 63691–63695. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, G.; Zheng, F.; Han, J.; Wu, X. Novel thermo-sensitive hydrogels containing polythioether dendrons: Facile tuning of LCSTs, strong absorption of Ag ions, and embedment of smaller Ag nanocrystals. Polym. Chem. 2015, 6, 625–632. [Google Scholar] [CrossRef]
- Snowden, M.J.; Thomas, D.; Vincent, B. Use of colloidal microgels for the absorption of heavy metal and other ions from aqueous solution. Analyst 1993, 118, 1367–1369. [Google Scholar] [CrossRef]
- Ju, X.J.; Zhang, S.B.; Zhou, M.Y.; Xie, R.; Yang, L.; Chu, L.Y. Novel heavy-metal adsorption material: Ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. J. Hazard. Mater. 2009, 167, 114–118. [Google Scholar] [CrossRef]
- Muther, T.; Qureshi, H.A.; Syed, F.I.; Aziz, H.; Siyal, A.; Dahaghi, A.K.; Negahban, S. Unconventional hydrocarbon resources: Geological statistics, petrophysical characterization, and field development strategies. J. Pet. Explor. Prod. Technol. 2021, 12, 1463–1488. [Google Scholar] [CrossRef]
- Liao, B.; Wang, J.; Han, X.; Wang, R.; Lv, K.; Bai, Y.; Jiang, H.; Shao, Z.; Wang, Y.; Sun, J. Microscopic molecular insights into clathrate methane hydrates dissociation in a flowing system. Chem. Eng. J. 2022, 430, 133098. [Google Scholar] [CrossRef]
- Yang, J.; Liu, S.; Wang, H.; Zhou, X.; Song, Y.; Xie, R.; Zhang, Z.; Yin, Q.; Xu, F. A Novel Method for Fracture Pressure Prediction in Shallow Formation During Deep-Water Drilling. J. Energy Resour. Technol. 2021, 144, 033005. [Google Scholar] [CrossRef]
- Suleimenov, I.E.; Guven, O.; Mun, G.A.; Uzun, C.; Gabrielyan, O.A.; Kabdushev, S.B.; Agibaeva, L.; Nurtazin, A. Hysteresis Effects During the Phase Transition in Solutions of Temperature Sensitive Polymers. Eurasian Chem.-Technol. J. 2017, 19, 41–46. [Google Scholar] [CrossRef]
- Hsu, S.-h.; Yu, T.-L. Dynamic viscoelasticity study of the phase transition of poly(N-isopropylacrylamide). Macromol. Rapid Commun. 2000, 21, 476–480. [Google Scholar] [CrossRef]
- Dhara, D.; Chatterji, P.R. Phase Transition in Linear and Cross-Linked Poly(N-Isopropylacrylamide) in Water: Effect of Various Types of Additives. J. Macromol. Sci. Part C Polym. Rev. 2000, 40, 51–68. [Google Scholar] [CrossRef]
- Carozzi, S.; Nasini, M.G.; Schelotto, C.; Caviglia, P.M.; Barocci, S.; Cantaluppi, A.; Salit, M. Peritoneal dialysis fluid (PDF) C++ and 1,25(OH)2D3 modulate peritoneal macrophage (PM0) antimicrobial activity in CAPD patients. Adv. Perit. Dial. 1990, 6, 110–113. [Google Scholar]
- Zhao, C.; Ma, Z.; Zhu, X.X. Rational design of thermoresponsive polymers in aqueous solutions: A thermodynamics map. Prog. Polym. Sci. 2019, 90, 269–291. [Google Scholar] [CrossRef]
- Clark, E.A.; Lipson, J.E.G. LCST and UCST behavior in polymer solutions and blends. Polymer 2012, 53, 536–545. [Google Scholar] [CrossRef]
- Bernstein, R.E.; Cruz, C.A.; Paul, D.R.; Barlow, J.W. LCST Behavior in Polymer Blends. Macromolecules 2002, 10, 681–686. [Google Scholar] [CrossRef]
- Seuring, J.; Agarwal, S. Polymers with upper critical solution temperature in aqueous solution. Macromol. Rapid Commun. 2012, 33, 1898–1920. [Google Scholar] [CrossRef] [PubMed]
- Mamytbekov, G.; Bouchal, K.; Ilavsky, M. Phase transition in swollen gels. Eur. Polym. J. 1999, 35, 1925–1933. [Google Scholar] [CrossRef]
- Echeverria, C.; López, D.; Mijangos, C. UCST Responsive Microgels of Poly(acrylamide−acrylic acid) Copolymers: Structure and Viscoelastic Properties. Macromolecules 2009, 42, 9118–9123. [Google Scholar] [CrossRef]
- Liu, K.; Han, P.; Yu, S.; Wu, X.; Tian, Y.; Liu, Q.; Wang, J.; Zhang, M.; Zhao, C. Hydrogen-Bonding-Induced Clusteroluminescence and UCST-Type Thermoresponsiveness of Nonconjugated Copolymers. Macromolecules 2022, 55, 8599–8608. [Google Scholar] [CrossRef]
- Phunpee, S.; Ruktanonchai, U.R.; Chirachanchai, S. Tailoring a UCST-LCST-pH Multiresponsive Window through a Single Polymer Complex of Chitosan-Hyaluronic Acid. Biomacromolecules 2022, 23, 5361–5372. [Google Scholar] [CrossRef] [PubMed]
- Majstorović, N.; Pechtold, J.; Agarwal, S. Upper Critical Solution Temperature Type Thermoresponsive Reactive Copolymers for Enzyme Immobilization. ACS Appl. Polym. Mater. 2022, 4, 5395–5403. [Google Scholar] [CrossRef]
- Aoki, T.; Nakamura, K.; Sanui, K.; Kikuchi, A.; Okano, T.; Sakurai, Y.; Ogata, N. Adenosine-induced changes of the phase transition of poly (6-(acryloyloxymethyl) uracil) aqueous solution. Polym. J. 1999, 31, 1185–1188. [Google Scholar] [CrossRef]
- Kudaibergenov, S.; Jaeger, W.; Laschewsky, A. Polymeric Betaines: Synthesis, Characterization, and Application. In Supramolecular Polymers Polymeric Betains Oligomers; Springer: Berlin/Heidelberg, Germany, 2006; pp. 157–224. [Google Scholar]
- Chen, L.; Honma, Y.; Mizutani, T.; Liaw, D.J.; Gong, J.P.; Osada, Y. Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer 2000, 41, 141–147. [Google Scholar] [CrossRef]
- Drzeżdżon, J.; Jacewicz, D.; Sielicka, A.; Chmurzyński, L. Characterization of polymers based on differential scanning calorimetry based techniques. TrAC Trends Anal. Chem. 2019, 110, 51–56. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, J.; Ding, Y.; Ye, X. Effect of urea on phase transition of poly(N-isopropylacrylamide) investigated by differential scanning calorimetry. J. Phys. Chem. B 2014, 118, 9460–9466. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Shao, Y.H.; Lu, J. Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels. Biomaterials 2006, 27, 4016–4024. [Google Scholar] [CrossRef] [PubMed]
- Grinberg, V.Y.; Burova, T.V.; Grinberg, N.V.; Tikhonov, V.E.; Dubovik, A.S.; Moskalets, A.P.; Khokhlov, A.R. Thermodynamic insight into the thermoresponsive behavior of chitosan in aqueous solutions: A differential scanning calorimetry study. Carbohydr. Polym. 2020, 229, 115558. [Google Scholar] [CrossRef]
- Abe, T.; Egawa, H.; Ito, H.; Nitta, A. Synthesis and characterization of thermo-sensitive polymeric beads. J. Appl. Polym. Sci. 2003, 40, 1223–1235. [Google Scholar] [CrossRef]
- Pan, C.; Long, Q.; Yu, D.; Rao, Y.; Wu, N.; Li, X. Swelling and drug releasing properties of poly(N-isopropylacrylamide) thermo-sensitive copolymer gels. Front. Chem. China 2008, 3, 314–319. [Google Scholar] [CrossRef]
- Mun, G.A.; Moldakhan, I.; Kabdushev, S.B.; Yermukhambetova, B.B.; Shaikhutdinov, R.; Yeligbayeva, G.Z. To the Methodology of Phase Transition Temperature Determination in Aqueous Solutions of Thermo-Sensitive Polymers. Eurasian Chem.-Technol. J. 2020, 22, 129–133. [Google Scholar] [CrossRef]
- Ribeiro, L.S.; Sala, R.L.; de Jesus, L.A.O.; Cruz, S.A.; Camargo, E.R. Analyzing the Effects of Silica Nanospheres on the Sol-Gel Transition Profile of Thermosensitive Hydrogels. Langmuir 2021, 37, 7373–7379. [Google Scholar] [CrossRef]
- Zhao, L.; Pei, Y.; Du, G.; Wen, Z.; Luo, Z.; Du, J. Thermo-responsive temporary plugging agent based on multiphase transitional supramolecular gel. Pet. Chem. 2018, 58, 94–101. [Google Scholar] [CrossRef]
- Wu, J.; Wei, W.; Wang, L.Y.; Su, Z.G.; Ma, G.H. A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 2007, 28, 2220–2232. [Google Scholar] [CrossRef]
- Zhang, Q.; Weber, C.; Schubert, U.S.; Hoogenboom, R. Thermoresponsive polymers with lower critical solution temperature: From fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horiz. 2017, 4, 109–116. [Google Scholar] [CrossRef]
- Huang, F.Y.; Huang, L.K.; Lin, W.Y.; Luo, T.Y.; Tsai, C.S.; Hsieh, B.T. Development of a thermosensitive hydrogel system for local delivery of 188Re colloid drugs. Appl. Radiat. Isot. 2009, 67, 1405–1411. [Google Scholar] [CrossRef]
- Patel, P.; Mandal, A.; Gote, V.; Pal, D.; Mitra, A.K. Thermosensitive hydrogel-based drug delivery system for sustained drug release. J. Polym. Res. 2019, 26, 131. [Google Scholar] [CrossRef]
- Ganji, F.; Abdekhodaie, M.J. Synthesis and characterization of a new thermosensitive chitosan–PEG diblock copolymer. Carbohydr. Polym. 2008, 74, 435–441. [Google Scholar] [CrossRef]
- Ramkissoon-Ganorkar, C.; Liu, F.; Baudyš, M.; Kim, S.W. Modulating insulin-release profile from pH/thermosensitive polymeric beads through polymer molecular weight. J. Control. Release 1999, 59, 287–298. [Google Scholar] [CrossRef]
- Suzuki, D.; Horigome, K.; Yamagata, T.; Shibata, K.; Tsuchida, A.; Okubo, T. Colloidal crystallization of thermo-sensitive gel spheres of poly (N-isopropyl acrylamide). Influence of degree of cross-linking of the gels. Colloid Polym. Sci. 2011, 289, 1799–1808. [Google Scholar] [CrossRef]
- Niskanen, J.; Tenhu, H. How to manipulate the upper critical solution temperature (UCST)? Polym. Chem. 2017, 8, 220–232. [Google Scholar] [CrossRef]
- Seuring, J.; Agarwal, S. First Example of a Universal and Cost-Effective Approach: Polymers with Tunable Upper Critical Solution Temperature in Water and Electrolyte Solution. Macromolecules 2012, 45, 3910–3918. [Google Scholar] [CrossRef]
- Xue, W.; Hamley, I.W. Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a hydrophobic comonomer. Polymer 2002, 43, 3069–3077. [Google Scholar] [CrossRef]
- Jain, K.; Vedarajan, R.; Watanabe, M.; Ishikiriyama, M.; Matsumi, N. Tunable LCST behavior of poly(N-isopropylacrylamide/ionic liquid) copolymers. Polym. Chem. 2015, 6, 6819–6825. [Google Scholar] [CrossRef]
- Zeng, N.; Dumortier, G.; Maury, M.; Mignet, N.; Boudy, V. Influence of additives on a thermosensitive hydrogel for buccal delivery of salbutamol: Relation between micellization, gelation, mechanic and release properties. Int. J. Pharm. 2014, 467, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Umapathi, R.; Reddy, P.M.; Rani, A.; Venkatesu, P. Influence of additives on thermoresponsive polymers in aqueous media: A case study of poly(N-isopropylacrylamide). Phys. Chem. Chem. Phys. 2018, 20, 9717–9744. [Google Scholar] [CrossRef] [PubMed]
- Perez-Fuentes, L.; Bastos-Gonzalez, D.; Faraudo, J.; Drummond, C. Effect of organic and inorganic ions on the lower critical solution transition and aggregation of PNIPAM. Soft Matter 2018, 14, 7818–7828. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, W.; Zhen, Z.; Sun, J.; Wang, Z.; Maeda, N. Preparation of thermo-responsive polymer and its application for plugging in hydrate-bearing sediments. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132210. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, L.; Liu, P.; Du, J.; Bai, Z.; Liu, J.; Zhang, N.; Luo, Z.; Xu, K.; Li, N. Laboratory study and field verification of a thermo-responsive water shutoff agent. J. Pet. Sci. Eng. 2021, 201, 108499. [Google Scholar] [CrossRef]
- Chen, W.; He, H.; Zhu, H.; Cheng, M.; Li, Y.; Wang, S. Thermo-Responsive Cellulose-Based Material with Switchable Wettability for Controllable Oil/Water Separation. Polymers 2018, 10, 592. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Yang, G.; Zhang, S.; Zhang, Y.; Gao, C.; Song, N.; Yu, L.; Zhang, P. Preparation and action mechanism of temperature sensitive N-isopropylacrylamide/nanosilica hybrid as rheological modifier for water-based drilling fluid. J. Pet. Sci. Eng. 2022, 219, 111096. [Google Scholar] [CrossRef]
- Liao, B.; Wang, J.; Sun, J.; Lv, K.; Liu, L.; Wang, Q.; Wang, R.; Lv, X.; Wang, Y.; Chen, Z. Microscopic insights into synergism effect of different hydrate inhibitors on methane hydrate formation: Experiments and molecular dynamics simulations. Fuel 2023, 340, 127488. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, D.; Sun, Y.; Li, S. Experimental study on hydraulic fracturing behavior of frozen clayey silt and hydrate-bearing clayey silt. Fuel 2022, 322, 124366. [Google Scholar] [CrossRef]
- Wang, R.; Wang, C.; Long, Y.; Sun, J.; Liu, L.; Wang, J. Preparation and investigation of self-healing gel for mitigating circulation loss. Adv. Geo-Energy Res. 2023, 8, 112–125. [Google Scholar] [CrossRef]
- Caenn, R.; Chillingar, G.V. Drilling fluids: State of the art. J. Pet. Sci. Eng. 1996, 14, 221–230. [Google Scholar] [CrossRef]
- Morton, K.; Bomar, B.; Schiller, M.; Gallet, J.; Azar, S.; Dye, W.; Daugereau, K.; Hansen, N.; Otto, M.; Leaper, P.; et al. Selection and evaluation criteria for high-performance drilling fluids. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 9–12 October 2005. [Google Scholar]
- Lal, M. Shale Stability: Drilling Fluid Interaction and Shale Strength. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, 20–22 April 1999. [Google Scholar]
- Xu, J.; Qiu, Z.; Huang, W.; Zhao, X. Preparation and performance properties of polymer latex SDNL in water-based drilling fluids for drilling troublesome shale formations. J. Nat. Gas Sci. Eng. 2017, 37, 462–470. [Google Scholar] [CrossRef]
- Fang, J.; Luo, Y.; Li, S.; Deng, M.; Xie, G. Effectiveness of Copolymer of Polymethylmethacrylate and Styrene as a Plugging Agent in Water-Based Drilling Fluids. Chem. Technol. Fuels Oils 2021, 57, 83–94. [Google Scholar] [CrossRef]
- Wang, W.J.; Qiu, Z.S.; Zhong, H.Y.; Huang, W.A.; Dai, W.H. Thermo-sensitive polymer nanospheres as a smart plugging agent for shale gas drilling operations. Pet. Sci. 2017, 14, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Yong, X.; Luo, Y.; Deng, L.; Li, K.; Zhou, Y. Synthesis and application of temperature-sensitive polymer as a novel plugging agent for water-based drilling fluids. J. Appl. Polym. Sci. 2022, 139, e52524. [Google Scholar] [CrossRef]
- Liu, P.; Wei, F.; Zhang, S.; Zhu, X.; Wang, L.; Xiong, C. A bull-heading water control technique of thermo-sensitive temporary plugging agent. Pet. Explor. Dev. 2018, 45, 536–543. [Google Scholar] [CrossRef]
- Van Oort, E.; Lee, J.; Friedheim, J.; Toups, B. New flat-rheology synthetic-based mud for improved deepwater drilling. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004. [Google Scholar]
- Zhao, X.; Qiu, Z.; Huang, W.; Wang, M. Mechanism and method for controlling low-temperature rheology of water-based drilling fluids in deepwater drilling. J. Pet. Sci. Eng. 2017, 154, 405–416. [Google Scholar] [CrossRef]
- Yang, S.; Zhan, Q.; Pan, Y.; Wang, X.; Narimane, B. Research progress on low-temperature rheology of high-performance ocean deepwater drilling fluids: An overview. J. Pet. Sci. Eng. 2022, 218, 110978. [Google Scholar] [CrossRef]
- Hu, Y.; Yue, Q.; Liu, S.; Fu, Z.; Liang, S. Research on deepwater synthetic drilling fluid and its low temperature rheological properties. Pet. Sci. 2011, 8, 485–489. [Google Scholar] [CrossRef]
- Hourdet, D.; L’alloret, F.; Audebert, R. Reversible thermothickening of aqueous polymer solutions. Polymer 1994, 35, 2624–2630. [Google Scholar] [CrossRef]
- Ding, T.; Wang, R.; Xu, J.; Ma, J.; Wang, X.; Xue, J.; Yang, X. Synthesis and application of a temperature sensitive poly(N-vinylcaprolactam-co-N,N-diethyl acrylamide) for low-temperature rheology control of water-based drilling fluid. Colloids Surf. A Physicochem. Eng. Asp. 2022, 644, 128855. [Google Scholar]
- Xie, B.; Zhang, X.; Li, Y.; Liu, W.; Luo, M. Application a novel thermo-sensitive copolymer as a potential rheological modifier for deepwater water-based drilling fluids. Colloids Surf. A Physicochem. Eng. Asp. 2019, 581, 123848. [Google Scholar] [CrossRef]
- Wu, X.; Lin, Y.; Song, B.; Jin, J.; Dong, X. Oil-based Drilling Fluid Technology for Ordovician Fractured Formation in Shunbei Oil and Gas Field. Drill. Complet. Fluids 2020, 37, 701–708. [Google Scholar]
- Yang, G.; Zhao, J.; Wang, X.; Guo, M.; Zhang, S.; Zhang, Y.; Song, N.; Yu, L.; Zhang, P. Temperature-sensitive amphiphilic nanohybrid as rheological modifier of water-in-oil emulsion drilling fluid: Preparation and performance analysis. Geoenergy Sci. Eng. 2023, 228, 211934. [Google Scholar] [CrossRef]
- Guo, M. Development and Rheological Properties of Organoclay and Thermo-Responsive SiO2 for Drilling Fluids. Henan University: Kaifeng, China, 2021. [Google Scholar]
- Jin, L.; Wojtanowicz, A.K. Minimum Produced Water from Oil Wells with Water-Coning Control and Water-Loop Installations. In Proceedings of the SPE Americas E&P Health, Safety, Security, and Environmental Conference, Houston, Texas, USA, 21–23 March 2011. [Google Scholar]
- Seright, R.; Lane, R.; Sydansk, R. A strategy for attacking excess water production. SPE Prod. Facil. 2003, 18, 158–169. [Google Scholar] [CrossRef]
- Dai, C.; You, Q.; Zhao, L.F.; Xiong, W. Study and Field Application of Profile Control Agent in High Temperature and High Salinity Reservoir. Energy Sources Part A Recovery Util. Environ. Eff. 2010, 34, 53–63. [Google Scholar]
- Cao, W.; Xie, K.; Lu, X.; Liu, Y.; Zhang, Y. Effect of profile-control oil-displacement agent on increasing oil recovery and its mechanism. Fuel 2019, 237, 1151–1160. [Google Scholar] [CrossRef]
- He, Y.; Xiong, S.; Yang, Z.; Ruan, X.; Gong, Y. The Research on Cross-linking Polymer Gel as In-depth Profile Control Agent. Pet. Sci. Technol. 2009, 27, 1300–1311. [Google Scholar] [CrossRef]
- Seright, R. Use of preformed gels for conformance control in fractured systems. SPE Prod. Facil. 1997, 12, 59–65. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, P.; Wang, Q.; Chen, H.; Zhang, S. Using gel prepared by associating polymer to control conformance in high temperature and high salinity reservoirs. In Proceedings of the PETSOC Canadian International Petroleum Conference, Calgary, AB, Canada, 8–10 June 2004. [Google Scholar]
- Bai, Y.; Ban, C.; He, S.; Zhao, J.; Zhang, H. Temperature-responsive self-lubricating hydrogel from dynamic Diels-Alder crosslinking for reservoir in-depth profile control. J. Mol. Liq. 2021, 323, 114595. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, D.; Zhang, Z.; Wang, S.; Wang, Q.; Xia, D. Steam channeling control in the steam flooding of super heavy oil reservoirs, Shengli Oilfield. Pet. Explor. Dev. 2012, 39, 785–790. [Google Scholar] [CrossRef]
- Luo, E.; Fan, Z.; Hu, Y.; Zhao, L.; Bo, B.; Yu, W.; Liang, H.; Liu, M.; Liu, Y.; He, C.; et al. An efficient optimization framework of cyclic steam stimulation with experimental design in extra heavy oil reservoirs. Energy 2020, 192, 116601. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.; Wang, J.; Hong, C.; Dong, X.; Meng, Q.; Liu, Y. A Novel High-temperature Gel to Control the Steam Channeling in Heavy Oil Reservoir. In Proceedings of the SPE Heavy Oil Conference-Canada, Calgary, AB, Canada, 10–12 June 2014. [Google Scholar]
- Altunina, L.K.; Kuvshinov, V.A. Improved Oil Recovery of High-Viscosity Oil Pools with Physicochemical Methods and Thermal-Steam Treatments. Oil Gas Sci. Technol. Rev. IFP 2007, 63, 37–48. [Google Scholar] [CrossRef]
- Yu, H.; Li, L.; Zheng, J.; Ji, W.; Qin, X.; Fu, X.; Gao, W. New Method of Steam Channeling Plugging in Horizontal Wells of Heavy Oil Steam Stimulation. In Proceedings of the SPE Latin America and Caribbean Heavy and Extra Heavy Oil Conference, Lima, Peru, 19–20 October 2016. [Google Scholar]
- Huang, T.; Su, Z.; Hou, K.; Zeng, J.; Zhou, H.; Zhang, L.; Nunes, S.P. Advanced stimuli-responsive membranes for smart separation. Chem. Soc. Rev. 2023, 52, 4173–4207. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, C.; Ma, H.; Yu, F.; Xia, S.; Han, Y. Preparation of Temperature-Sensitive SiO2–PSBMA for Reducing the Viscosity of Heavy Oil. Energy Fuels 2023, 37, 1896–1906. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, N.; Zhang, Q.; Qu, R.; Liu, Y.; Li, X.; Wei, Y.; Feng, L.; Jiang, L. Thermo-Driven Controllable Emulsion Separation by a Polymer-Decorated Membrane with Switchable Wettability. Angew. Chem. Int. Ed. Engl. 2018, 57, 5740–5745. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, L.; Zhang, S.; Liao, B.; Zhao, K.; Li, Y.; Xu, J.; Chen, L. Review of the Perspectives and Study of Thermo-Responsive Polymer Gels and Applications in Oil-Based Drilling Fluids. Gels 2023, 9, 969. https://doi.org/10.3390/gels9120969
Wang J, Liu L, Zhang S, Liao B, Zhao K, Li Y, Xu J, Chen L. Review of the Perspectives and Study of Thermo-Responsive Polymer Gels and Applications in Oil-Based Drilling Fluids. Gels. 2023; 9(12):969. https://doi.org/10.3390/gels9120969
Chicago/Turabian StyleWang, Jintang, Lei Liu, Siyang Zhang, Bo Liao, Ke Zhao, Yiyao Li, Jiaqi Xu, and Longqiao Chen. 2023. "Review of the Perspectives and Study of Thermo-Responsive Polymer Gels and Applications in Oil-Based Drilling Fluids" Gels 9, no. 12: 969. https://doi.org/10.3390/gels9120969
APA StyleWang, J., Liu, L., Zhang, S., Liao, B., Zhao, K., Li, Y., Xu, J., & Chen, L. (2023). Review of the Perspectives and Study of Thermo-Responsive Polymer Gels and Applications in Oil-Based Drilling Fluids. Gels, 9(12), 969. https://doi.org/10.3390/gels9120969