Wound Microenvironment Self-Adjusting Hydrogels with Thermo-Sensitivity for Promoting Diabetic Wound Healing
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Thermo-Sensitive ASGP/SA/PNIPAM Hydrogel
2.3. Morphological Characterizations
2.4. Mechanical Properties and Adhesion
2.5. Temperature Sensitivity
2.6. Release of MFH
2.7. Cytotoxicity Assay
3. Results and Discussion
3.1. Micro-Morphology and Characterization
3.2. Temperature Sensitivity
3.3. Adhesion Ability
3.4. Mechanical Properties
3.5. Release of MFH
3.6. Cytocompatibility In Vitro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, H.; Bai, Q.; Kong, F.; Li, Y.; Zha, X.; Zhang, L.; Zhao, Y.; Gao, S.; Li, P.; Jiang, Q. Allantoin-functionalized silk fibroin/sodium alginate transparent scaffold for cutaneous wound healing. Int. J. Biol. Macromol. 2022, 207, 859–872. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Gao, B.; Wei, X. Recent advances in Raman spectroscopy for skin diagnosis. J. Innov. Opt. Health Sci. 2023, 16, 2330003. [Google Scholar] [CrossRef]
- Rivero, G.; Meuter, M.; Pepe, A.; Guevara, M.G.; Boccaccini, A.R.; Abraham, G.A. Nanofibrous membranes as smart wound dressings that release antibiotics when an injury is infected. Colloids Surf. A Physicochem. Eng. Asp. 2019, 587, 124313. [Google Scholar] [CrossRef]
- Lin, H.; Pan, Y.; Cai, S. Direct Lineage Reprogramming for Induced Keratinocyte Stem Cells: A Potential Approach for Skin Repair. Stem Cells Transl. Med. 2023, 12, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Alderton, G.K. Driving too much wound healing in the skin. Nat. Rev. Cancer 2014, 14, 155. [Google Scholar] [CrossRef]
- Rahmani, F.; Atabaki, R.; Behrouzi, S.; Mohamadpour, F.; Kamali, H. The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int. J. Pharm. 2023, 631, 122484. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Santschi, M.; Ferguson, S. A Biomimetic Macroporous Hybrid Scaffold with Sustained Drug Delivery for Enhanced Bone Regeneration. Biomacromolecules 2021, 22, 2460–2471. [Google Scholar] [CrossRef]
- Harmanci, S.; Dutta, A.; Cesur, S.; Sahin, A.; Gunduz, O.; Kalaskar, D.; Ustundag, C. Production of 3D Printed Bi-Layer and Tri-Layer Sandwich Scaffolds with Polycaprolactone and Poly (vinyl alcohol)-Metformin towards Diabetic Wound Healing. Polymers 2022, 14, 5306. [Google Scholar] [CrossRef]
- Yang, L.; Liang, F.; Zhang, X.; Jiang, Y.; Duan, F.; Li, L.; Ren, F. Remodeling microenvironment based on MOFs-Hydrogel hybrid system for improving diabetic wound healing. Chem. Eng. J. 2022, 427, 131506. [Google Scholar] [CrossRef]
- Koffi, D.; Konan, A.; Ehouman, E.; Bonfoh, B. Comparison of Chronic Wound Inpatients and Outpatients’ Diets and Meals Nutrient Content in Taabo Wound Management Unit, Côte d’Ivoire. Food Nutr. Sci. 2023, 14, 156–174. [Google Scholar] [CrossRef]
- Falanga, V.; Isseroff, R.; Soulika, A.; Romanelli, M.; Margolis, D.; Kapp, S.; Granick, M.; Harding, K. Chronic wounds. Nat. Rev. Dis. Primers 2022, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Feng, X.; Liu, M.; Huang, X.; Gao, W.; Wu, H. Synthesis of low-molecular-weight gel with tunable gel-sol transition temperature for thermo-sensitive drug controlled release. J. Mol. Struct. 2022, 1264, 133212. [Google Scholar] [CrossRef]
- Jeong, B.; Kim, S.; Bae, Y. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 154–162. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, K.; Zheng, Q.; Yao, L.; Dong, Y.; Song, R. Synthesis and temperature-sensitive lubrication behavior of PNIPAM microgels for titanium alloy. Ind. Lubr. Tribol. 2022, 74, 507–513. [Google Scholar] [CrossRef]
- Dhamecha, D.; Le, D.; Chakravarty, T.; Perera, K.; Dutta, A.; Menon, J. Fabrication of PNIPAm-based thermoresponsive hydrogel microwell arrays for tumor spheroid formation. Mater. Sci. Eng. 2021, 125, 112100. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Lenart, W.; Sun, J.; Hammouda, B.; Hore, M. Interaction and Conformation of Aqueous Poly(N-isopropylacrylamide) (PNIPAM) Star Polymers below the LCST. Macromolecules 2017, 50, 2145–2154. [Google Scholar] [CrossRef]
- Yang, Z.; Fangv, J.; Tian, D. 5-Fluorouracil-Loaded Sodium Alginate/Konjac Glucomannan Interacted with Attapulgite as a Potential Drug Delivery System. ChemistrySelect 2022, 7, e202201115. [Google Scholar] [CrossRef]
- Dalal, S.; Hussein, M.; Naggar, E.; Mostafa, S.; Dessuuki, S. Characterization of alginate extracted from Sargassum latifolium and its use in Chlorella vulgaris growth promotion and riboflavin drug delivery. Sci. Rep. 2021, 11, 16741. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Chen, J.; Guo, J.; Yuan, M.; Wan, G.; Yan, C.; Li, W.; Machens, H.; Rinkevich, Y. Calcium ion cross-linked sodium alginate hydrogels containing deferoxamine and copper nanoparticles for diabetic wound healing. Int. J. Biol. Macromol. 2022, 202, 657–670. [Google Scholar] [CrossRef]
- Soleimanpour, M.; Mirhaji, S.; Jafari, S.; Derakhshankhah, H.; Mamashli, F.; Nedaei, H.; Karimi, M.; Motasadizadeh, H.; Fatahi, Y.; Ghasemi, A.; et al. Designing a new alginate-fibrinogen biomaterial composite hydrogel for wound healing. Sci. Rep. 2022, 12, 7213. [Google Scholar] [CrossRef]
- Yuan, H.; Zheng, X.; Liu, W.; Zhang, H.; Shao, J.; Yao, J.; Mao, C.; Hui, J.; Fan, D. A novel bovine serum albumin and sodium alginate hydrogel scaffold doped with hydroxyapatite nanowires for cartilage defects repair. Colloids Surf. B Biointerfaces 2020, 192, 111041. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Dai, Y.; Han, X.; Huo, F.; Xie, L.; Yu, M.; Wang, Y.; An, N.; Li, Z.; Guo, W. Biomineralization-inspired mineralized hydrogel promotes the repair and regeneration of dentin/bone hard tissue. npj Regen. Med. 2023, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Keihan, R.; Radinekiyan, F.; Madanchi, H.; Aliabadi, H.; Maleki, A. Graphene oxide/alginate/silk fibroin composite as a novel bionanostructure with improved blood compatibility, less toxicity and enhanced mechanical properties. Carbohydr. Polym. 2020, 248, 116802. [Google Scholar] [CrossRef]
- Ji, D.; Park, J.; Oh, M.; Nguyen, T.; Shin, H.; Kim, J.; Kim, D.; Park, H.; Kim, J. Superstrong, superstiff, and conductive alginate hydrogels. Nat. Commun. 2022, 13, 3019. [Google Scholar] [CrossRef] [PubMed]
- Inata, S.; Sogawa, H.; Sanda, F. Water-soluble alginate–based adhesive: Catechol modification and adhesion properties. Polym. J. 2023, 55, 785–795. [Google Scholar] [CrossRef]
- Hu, Z.; An, K.; Wang, J.; Xu, X.; Chen, Z.; Hu, J.; Yang, L. Preparation and Drug Release Behavior of Tussah Silk Fibroin Composite Membrane. Fiber Polym. 2020, 21, 252–261. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, P.; Chen, L.; Zhao, L.; Feng, J. Antifouling poly(N-(2-hydroxyethyl)acrylamide)/sodium alginate double network hydrogels with eminent mechanical properties. Polym. Test. 2021, 95, 107087. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Shi, J.; Zhu, R.; Zhang, J.; Zhang, Z.; Ma, D.; Hou, Y.; Lin, F.; Yang, J.; et al. A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering. Sci. Rep. 2016, 6, 39477. [Google Scholar] [CrossRef]
- Mandal, B.; Kundu, S. Non-bioengineered silk gland fibroin protein: Characterization and evaluation of matrices for potential tissue engineering applications. Biotechnol. Bioeng. 2010, 100, 1237–1250. [Google Scholar] [CrossRef]
- Mukherjee, S.; Krishnan, A.; Athira, R.; Kasoju, N.; Sah, M. Silk fibroin and silk sericin in skin tissue engineering and wound healing: Retrospect and prospects. In Natural Polymers in Wound Healing and Repair; Elsevier: Amsterdam, The Netherlands, 2022; pp. 301–333. [Google Scholar] [CrossRef]
- Ma, Y.; Zeng, W.; Ba, Y.; Luo, Q.; Ou, Y.; Liu, R.; Ma, J.; Tang, Y.; Hu, J.; Wang, H. A single-cell transcriptomic atlas characterizes the silk-producing organ in the silkworm. Nat. Commun. 2022, 13, 3316. [Google Scholar] [CrossRef]
- Hazra, S.; Nandi, S.; Naskar, D.; Guha, R.; Chowdhury, S.; Pradhan, N.; Kundu, S.; Konar, A. Non-mulberry Silk Fibroin Biomaterial for Corneal Regeneration. Sci. Rep. 2016, 6, 21840. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Gomes, J.; Vale, A.; Lu, S.; Rui, L.; Kundu, S. Green pathway for processing non-mulberry antheraeapernyi silk fibroin/chitin-based sponges: Biophysical and biochemical characterization. Front. Mater. 2020, 7, 135. [Google Scholar] [CrossRef]
- Rezaei, F.; Damoogh, S.; Reis, R.; Kundu, S.; Mottaghitalab, F.; Farokhi, M. Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. Biofabrication 2020, 13, 015005. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, M.; Kano, G.; Paulo, L.; Lopes, P.; Moraes, M. Silk fibroin/chitosan/alginate multilayer membranes as a system for controlled drug release in wound healing. Int. J. Biol. Macromol. 2020, 152, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Keihan, R.; Khalili, F.; Aliabadi, H.; Maleki, A.; Bani, M. Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: A novel scaffold with biological and antibacterial activity and improved mechanical properties. Int. J. Biol. Macromol. 2020, 162, 1959–1971. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Han, X.; Lu, Q.; Qi, X.; Guo, C.; Wu, X. Rhein incorporated silk fibroin hydrogels with antibacterial and anti-inflammatory efficacy to promote healing of bacteria-infected burn wounds. Int. J. Biol. Macromol. 2022, 201, 14–19. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, P.; Yang, R.; Tan, X.; Shi, T.; Ma, J.; Xue, W.; Chi, B. Bio-fabricated nanocomposite hydrogel with ROS scavenging and local oxygenation accelerates diabetic wound healing. J. Mater. Chem. B 2022, 10, 4083–4095. [Google Scholar] [CrossRef]
- Lin, C.; Li, Y.; Sun, X.; Zhang, X.; Huang, W.; Ying, J.; Liu, X.; Hua, M. Fabrication of superhydrophobic surfaces inspired by “stomata effect” of plant leaves via swelling-vesiculating-cracking method. Chem. Eng. J. 2020, 400, 125935. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, X.; Wei, Y. Nanocatalytic Hydrogel with Rapid Photodisinfection and Robust Adhesion for Fortified Cutaneous Regeneration. ACS Appl. Mater. Interfaces 2023, 15, 6354–6370. [Google Scholar] [CrossRef]
- Xu, H.; Shen, L.; Xu, L.; Yang, Y. Low-temperature crosslinking of proteins using non-toxic citric acid in neutral aqueous medium:Mechanism and kinetic study. Ind. Crop. Prod. 2015, 74, 234–240. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; Cheng, D. Eco-Friendly Bio-Hydrogels Based on AntheraeaPernyi Silk Gland Protein for Cell and Drug Delivery. Gels 2022, 8, 398. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Dang, G.; Guo, J. Sodium alginate/feather keratin-g-allyloxy polyethylene glycol composite phase change fiber. Int. J. Biol. Macromol. 2019, 131, 192–200. [Google Scholar] [CrossRef]
- Zu, S.; Wang, Z.; Zhang, S. A bioinspired 4D printed hydrogel capsule for smart controlled drug release. Mater. Today Chem. 2022, 24, 100789. [Google Scholar] [CrossRef]
- Fei, X.; Lu, T.; Ma, J.; Zhu, S.; Zhang, D. A bioinspired poly(N-isopropylacrylamide)/silver nanocomposite as a photonic crystal with both optical and thermal responses. Nanoscale 2017, 9, 12969–12975. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.; Lele, A.; Mashelkar, R. Designing new thermoreversible gels by molecular tailoring of hydrophilic-hydrophobic interactions. J. Chem. Phys. 2000, 112, 3063–3070. [Google Scholar] [CrossRef]
- Lih, E.; Lee, J.; Park, K.; Park, K. Rapidly curable chitosan-PEG hydrogels as tissue adhesives for hemostasis and wound healing. Acta Biomater. 2012, 8, 3261–3269. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, S.; Wang, Y. Regenerated Antheraea pernyi Silk Fibroin/Poly (N-isopropylacrylamide) Thermosensitive Composite Hydrogel with Improved Mechanical Strength. Polymers 2019, 11, 302. [Google Scholar] [CrossRef]
- Zhao, J.; Li, S.; Zhao, Y.; Peng, Z. Effects of cellulose nanocrystal polymorphs and initial state of hydrogels on swelling and drug release behavior of alginate-based hydrogels. Polym. Bull. 2020, 77, 4401–4416. [Google Scholar] [CrossRef]
- Patwa, R.; Zandraa, O.; Capáková, Z.; Saha, N.; Sáha, P. Effect of iron-oxide nanoparticles impregnated bacterial cellulose on overall properties of alginate/casein hydrogels: Potential injectable biomaterial for wound healing applications. Polymers 2020, 12, 2690. [Google Scholar] [CrossRef]
- Zu, S.; Wang, Z.; Zhang, S.; Guo, Y.; Chen, C.; Zhang, Q.; Wang, Z.; Liu, T.; Liu, Q.; Zhang, Z. 4D printing of core–shell hydrogel capsules for smart controlled drug release. Bio-Des. Manuf. 2022, 5, 294–304. [Google Scholar] [CrossRef]
- Mezhuev, Y.O.; Varankin, A.V.; Luss, A.L.; Dyatlov, V.A.; Tsatsakis, A.M.; Shtilman, M.I.; Korshak, Y.V. Immobilization of dopamine on the copolymer of N-vinyl-2-pyrrolidone and allylglycidyl ether and synthesis of new hydrogels. Polym. Int. 2020, 69, 1275–1282. [Google Scholar] [CrossRef]
- Pasban, S.; Raissi, H. PNIPAM/Hexakis as a thermosensitive drug delivery system for biomedical and pharmaceutical applications. Sci. Rep. 2022, 12, 14363. [Google Scholar] [CrossRef] [PubMed]
- Bischofberger, I.; Trappe, V. New aspects in the phase behaviour of poly-N-isopropyl acrylamide: Systematic temperature dependent shrinking of PNIPAM assemblies well beyond the LCST. Sci. Rep. 2015, 5, 15520. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Ji, L.; Xu, W.; Hou, G.; Wang, J.; Wang, Y.; Wang, T. Copper-Hydrazide Coordinated Multifunctional Hyaluronan Hydrogels for Infected Wound Healing. ACS Appl. Mater. Interfaces 2022, 14, 16018–16031. [Google Scholar] [CrossRef]
- Sun, A.; Hu, D.; He, X.; Ji, X.; Li, T.; Wei, X.; Qian, Z. Mussel-inspired hydrogel with injectable self-healing and antibacterial properties promotes wound healing in burn wound infection. NPG Asia Mater. 2022, 14, 86. [Google Scholar] [CrossRef]
- Sun, A.; He, X.; Li, L.; Li, T.; Qian, Z. An injectable photopolymerized hydrogel with antimicrobial and biocompatible properties for infected skin regeneration. NPG Asia Mater. 2020, 12, 25. [Google Scholar] [CrossRef]
First Order/20 s | First Order/37 °C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R12 | k1 | R22 | k2 | R32 | k3 | R12 | k1 | R22 | k2 | R32 | k3 | |
A8S2/N0.4 | 0.85 | 0.035 | 0.94 | 0.004 | 0.87 | 0.001 | 0.82 | 0.05 | 0.92 | 0.005 | 0.82 | 0.001 |
A8S2/N0.6 | 0.91 | 0.028 | 0.93 | 0.004 | 0.91 | 0.001 | 0.99 | 0.04 | 0.98 | 0.005 | 0.84 | 0.002 |
A8S2/N0.8 | 0.91 | 0.027 | 0.96 | 0.004 | 0.92 | 0.002 | 0.80 | 0.04 | 0.99 | 0.005 | 0.88 | 0.002 |
A8S2/N1.0 | 0.87 | 0.026 | 0.94 | 0.003 | 0.95 | 0.001 | 0.81 | 0.03 | 0.99 | 0.005 | 0.81 | 0.003 |
A8S2/N1.2 | 0.84 | 0.026 | 0.93 | 0.003 | 0.92 | 0.002 | 0.79 | 0.04 | 0.99 | 0.005 | 0.80 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Guo, J.; Wang, B.-X.; Zhang, Y.; Yao, Q.; Cheng, D.-H.; Lu, Y.-H. Wound Microenvironment Self-Adjusting Hydrogels with Thermo-Sensitivity for Promoting Diabetic Wound Healing. Gels 2023, 9, 987. https://doi.org/10.3390/gels9120987
Li J, Guo J, Wang B-X, Zhang Y, Yao Q, Cheng D-H, Lu Y-H. Wound Microenvironment Self-Adjusting Hydrogels with Thermo-Sensitivity for Promoting Diabetic Wound Healing. Gels. 2023; 9(12):987. https://doi.org/10.3390/gels9120987
Chicago/Turabian StyleLi, Jia, Jing Guo, Bo-Xiang Wang, Yue Zhang, Qiang Yao, De-Hong Cheng, and Yan-Hua Lu. 2023. "Wound Microenvironment Self-Adjusting Hydrogels with Thermo-Sensitivity for Promoting Diabetic Wound Healing" Gels 9, no. 12: 987. https://doi.org/10.3390/gels9120987
APA StyleLi, J., Guo, J., Wang, B. -X., Zhang, Y., Yao, Q., Cheng, D. -H., & Lu, Y. -H. (2023). Wound Microenvironment Self-Adjusting Hydrogels with Thermo-Sensitivity for Promoting Diabetic Wound Healing. Gels, 9(12), 987. https://doi.org/10.3390/gels9120987