Effect of Storage Time and Temperature on Digestibility, Thermal, and Rheological Properties of Retrograded Rice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Thermal Properties
2.2. Determination of Total Starch, Non-Resistant Starch, and Resistant Starch Content
2.3. Determination of Apparent Viscosity and Dynamic Rheological Properties of Rice
2.4. Correlation Matrix
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Retrograded Rice
4.3. Determination of Thermal Properties of Rice
4.4. Determination of Total Starch, Non-Resistant Starch, and Resistant Starch Content of Rice
4.5. Determination of Apparent Viscosity and Dynamic Rheological Properties of Rice
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noort, M.W.J.; Renzetti, S.; Linderhof, V.; du Rand, G.E.; Marx-Pienaar, N.J.M.M.; de Kock, H.L.; Magano, N.; Taylor, J.R.N. Towards Sustainable Shifts to Healthy Diets and Food Security in Sub-Saharan Africa with Climate-Resilient Crops in Bread-Type Products: A Food System Analysis. Foods 2022, 11, 135. [Google Scholar] [PubMed]
- Chakraborty, I.; Govindaraju, I.; Rongpipi, S.; Mahato, K.K.; Mazumder, N. Effects of hydrothermal treatments on physicochemical properties and in vitro digestion of starch. Food Biophys. 2021, 16, 544–554. [Google Scholar]
- Tarahi, M.; Hedayati, S.; Shahidi, F. Effects of mung bean (Vigna radiata) protein isolate on rheological, textural, and structural properties of native corn starch. Polymers 2022, 14, 3012. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Mal, S.S.; Paul, U.C.; Rahman, M.; Mazumder, N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A Review. Food Bioprocess Technol. 2022, 15, 1195–1223. [Google Scholar] [CrossRef]
- Chang, Q.; Zheng, B.; Zhang, Y.; Zeng, H. A comprehensive review of the factors influencing the formation of retrograded starch. Int. J. Biol. Macromol. 2021, 186, 163–173. [Google Scholar] [PubMed]
- Khan, A.; Rahman, U.U.; Siddiqui, S.; Irfan, M.; Shah, A.A.; Badshah, M.; Hasan, F.; Khan, S. Preparation and characterization of resistant starch type III from enzymatically hydrolyzed maize flour. Mol. Biol. Rep. 2019, 46, 4565–4580. [Google Scholar]
- Chung, H.J.; Lim, H.S.; Lim, S.T. Effect of partial gelatinization and retrogradation on the enzymatic digestion of waxy rice starch. J. Cereal Sci. 2006, 43, 353–359. [Google Scholar]
- Kim, J.O.; Kim, W.S.; Shin, M.S. A comparative study on retrogradation of rice starch gels by DSC, X-ray and α-amylase methods. Starch-Stärke 1997, 49, 71–75. [Google Scholar] [CrossRef]
- Tako, M.; Tamaki, Y.; Teruya, T.; Takeda, Y. The principles of starch gelatinization and retrogradation. Food Nutr. Sci. 2014, 5, 42262. [Google Scholar] [CrossRef]
- Aini, N.; Purwiyatno, H. Gelatinization properties of white maize starch from three varieties of corn subject to oxidized and acetylated-oxidized modification. Food Res. J. 2010, 17, 961–968. [Google Scholar]
- Ai, J.; Witt, T.; Cowin, G.; Dhital, S.; Turner, M.S.; Stokes, J.R.; Gidley, M.J. Anti-staling of high-moisture starchy food: Effect of hydrocolloids, emulsifiers and enzymes on mechanics of steamed-rice cakes. Food Hydrocoll. 2018, 83, 454–464. [Google Scholar]
- Yang, H.; Park, J.W. Effects of starch properties and thermal-processing conditions on surimi–starch gels. LWT-Food Sci. Technol. 1998, 31, 344–353. [Google Scholar]
- Ashogbon, A.O.; Akintayo, E.T.; Oladebeye, A.O.; Oluwafemi, A.D.; Akinsola, A.F.; Imanah, O.E. Developments in the isolation, composition, and physicochemical properties of legume starches. Crit. Rev. Food Sci. Nutr. 2021, 61, 2938–2959. [Google Scholar] [PubMed]
- Fredriksson, H.; Silverio, J.; Andersson, R.; Eliasson, A.C.; Åman, P.J.C.P. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr. Polym. 1998, 35, 119–134. [Google Scholar] [CrossRef]
- Park, E.Y.; Baik, B.K.; Lim, S.T. Influences of temperature-cycled storage on retrogradation and in vitro digestibility of waxy maize starch gel. J. Cereal Sci. 2009, 50, 43–48. [Google Scholar] [CrossRef]
- Dong, R.; Niu, Q.; Zhang, K.; Hu, X.; Bu, Y. The effect of retrogradation time and ambient relative humidity on the quality of extruded oat noodles. Food Sci. Nutr. 2020, 8, 2940–2949. [Google Scholar] [CrossRef]
- Haralampu, S.G. Resistant starch—A review of the physical properties and biological impact of RS3. Carbohydr. Polym. 2000, 41, 285–292. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Zhang, X.; Copeland, L.; Wang, S. Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch. Sci. Rep. 2016, 6, 20965. [Google Scholar]
- Wang, Y.; Chen, L.; Yang, T.; Ma, Y.; McClements, D.J.; Ren, F.; Tian, Y.; Jin, Z. A review of structural transformations and properties changes in starch during thermal processing of foods. Food Hydrocoll. 2021, 113, 106543. [Google Scholar] [CrossRef]
- Li, C.; Ji, Y.; Zhang, S.; Yang, X.; Gilbert, R.G.; Li, S.; Li, E. Amylose Inter-Chain Entanglement and Inter-Chain Overlap Impact Rice Quality. Foods 2022, 11, 1516. [Google Scholar]
- Tuaño, A.P.P.; Barcellano, E.C.G.; Rodriguez, M.S. Resistant starch levels and in vitro starch digestibility of selected cooked Philippine brown and milled rices varying in apparent amylose content and glycemic index. Food Chem. Mol. Sci. 2021, 2, 100010. [Google Scholar]
- Frei, M.; Siddhuraju, P.; Becker, K. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chem. 2003, 83, 395–402. [Google Scholar]
- Sonia, S.; Witjaksono, F.; Ridwan, R. Effect of cooling of cooked white rice on resistant starch content and glycemic response. Asia Pac. J. Clin. Nutr. 2015, 24, 620–625. [Google Scholar] [PubMed]
- Dong, H.; Zhang, Q.; Gao, J.; Chen, L.; Vasanthan, T. Comparison of morphology and rheology of starch nanoparticles prepared from pulse and cereal starches by rapid antisolvent nanoprecipitation. Food Hydrocoll. 2021, 119, 106828. [Google Scholar]
- Santamaria, M.; Garzon, R.; Moreira, R.; Rosell, C.M. Estimation of viscosity and hydrolysis kinetics of corn starch gels based on microstructural features using a simplified model. Carbohydr. Polym. 2021, 273, 118549. [Google Scholar] [CrossRef]
- Hafila, K.Z.; Jumaidin, R.; Ilyas, R.A.; Selamat, M.Z.; Yusof, F.A.M. Effect of palm wax on the mechanical, thermal, and moisture absorption properties of thermoplastic cassava starch composites. Int. J. Biol. Macromol. 2022, 194, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Dartois, A.; Singh, J.; Kaur, L.; Singh, H. Influence of guar gum on the in vitro starch digestibility—Rheological and microstructural characteristics. Food Biophys. 2010, 5, 149–160. [Google Scholar]
- Tsai, M.L.; Li, C.F.; Lii, C.Y. Effects of granular structures on the pasting behaviors of starches. Cereal Chem. 1997, 74, 750–757. [Google Scholar]
- Won, C.; Jin, Y.I.; Kim, M.; Lee, Y.; Chang, Y.H. Structural and rheological properties of potato starch affected by degree of substitution by octenyl succinic anhydride. Int. J. Food Prop. 2017, 20, 3076–3089. [Google Scholar] [CrossRef]
- Govindaraju, I.; Zhuo, G.Y.; Chakraborty, I.; Melanthota, S.K.; Mal, S.S.; Sarmah, B.; Baruah, V.J.; Mahato, K.K.; Mazumder, N. Investigation of structural and physico-chemical properties of rice starch with varied amylose content: A combined microscopy, spectroscopy, and thermal study. Food Hydrocoll. 2022, 122, 107093. [Google Scholar]
- Fu, Z.Q.; Wang, L.J.; Li, D.; Zhou, Y.G.; Adhikari, B. The effect of partial gelatinization of corn starch on its retrogradation. Carbohydr. Polym. 2013, 97, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Jiao, A.; Yang, Y.; Li, Y.; Chen, Y.; Xu, X.; Jin, Z. Structural properties of rice flour as affected by the addition of pea starch and its effects on textural properties of extruded rice noodles. Int. J. Food Prop. 2020, 23, 809–819. [Google Scholar]
- Yazid, N.S.M.; Abdullah, N.; Muhammad, N. Comparison of chemical, functional and morphological characteristics of jackfruit (Artocarpus heterophyllus Lam.) (J33) seed starch and commercial native starches. In IOP Conference Series: Earth and Environmental Science, Proceedings of the International Conference on Biodiversity 11–13 November 2018, Johor Darul Takzim, Malaysia; 2019; Volume 269, p. 012031. [Google Scholar]
Sample | Peak Temperature of Gelatinization (Tp, °C) | |||||
---|---|---|---|---|---|---|
Raw Rice | Freshly Cooked (Room Temperature) | 6 h Stored | 12 h Stored | |||
4 °C | −20 °C | 4 °C | −20 °C | |||
Diasang lahi | 56.12 | 61.21 | 72.81 | 84.10 | 106.88 | 109.75 |
Khaju lahi | 58.53 | 62.41 | 64.72 | 69.73 | 74.09 | 100.40 |
Dhusuri bao | 64.55 | 101.28 | 102.65 | 106.88 | 106.90 | 110.74 |
Omkar | 46.82 | 52.26 | 69.73 | 57.05 | 92.37 | 107.82 |
Bili rajamudi | 79.05 | 84.25 | 93.78 | 61.46 | 101.28 | 119.75 |
Sample | Raw Rice | Freshly Cooked | 6 h Stored | 12 h Stored | ||
---|---|---|---|---|---|---|
ΔHG | ΔHR | ΔHR (4 °C) | ΔHR (−20 °C) | ΔHR (4 °C) | ΔHR (−20 °C) | |
Diasang lahi | 23.49 | 10.48 | 11.39 | 13.29 | 15.29 | 15.29 |
Khaju lahi | 25.48 | 12.28 | 14.2 | 16.39 | 18.37 | 21.47 |
Dhusuri bao | 15.29 | 4.39 | 7.39 | 9.27 | 9.38 | 12.29 |
Omkar | 13.49 | 5.1 | 7.39 | 10.47 | 11.29 | 12.2 |
Bili rajamudi | 8.3 | 2.48 | 4.24 | 6.29 | 7.26 | 7.39 |
Sample | Raw Rice | Freshly Cooked | 6 h Stored | 12 h Stored | |||
---|---|---|---|---|---|---|---|
4 °C | −20 °C | 4 °C | −20 °C | ||||
Total starch (TS%) | Diasang lahi | 93.52 ± 2.37 a | 82.26 ± 3.39 a | 82.52 ± 2.39 a | 81.81 ± 3.48 a | 85.05 ± 2.49 a | 84.67 ± 2.50 a |
Khaju lahi | 89.769 ± 3.49 a | 83.33 ± 4.49 a | 82.50 ± 2.43 a | 74.77 ± 3.49 a | 84.00 ± 2.49 b | 99.02 ± 3.48 c | |
Dhusuri bao | 90.0636 ± 3.48 a | 82.98 ± 5.48 a | 84.07 ± 2.48 a | 88.89 ± 6.48 a | 85.13 ± 3.56 a | 89.34 ± 2.58 a | |
Omkar | 90.55 ± 3.45 a | 85.95 ± 4.34 a | 83.86 ± 5.34 a | 73.95 ± 5.48 b | 65.47 ± 3.56 c | 86.67 ± 2.56 a | |
Bili rajamudi | 87.75 ± 4.48 a | 86.66 ± 5.36 a | 82.26 ± 3.45 a | 76.78 ± 4.46 b | 73.13 ± 2.45 a | 82.98 ± 3.78 a | |
Non- resistant starch (NRS%) | Diasang lahi | 12.35 ± 3.47 a | 71.99 ± 4.47 b | 66.85 ± 3.45 b | 63.96 ± 4.67 b | 61.09 ± 5.67 b | 34.45 ± 4.69 b |
Khaju lahi | 9.06 ± 3.58 a | 70.49 ± 3.58 b | 67.05 ± 3.58 b | 56.09 ± 3.58 b | 63.62 ± 3.58 b | 66.16 ± 3.58 b | |
Dhusuri bao | 6.36 ± 3.4 a | 71.36 ± 5.34 b | 64.55 ± 4.45 b | 40.41 ± 2.48 c | 29.04 ± 5.4 c | 28.62 ± 6.39 c | |
Omkar | 3.69 ± 1.45 a | 76.55 ± 3.56 b | 68.27 ± 4.57 b | 56.09 ± 6.67 c | 34.85 ± 4.68 b | 20.25 ± 6.68 c | |
Bili rajamudi | 2.72 ± 1.35 a | 74.24 ± 4.56 b | 65.89 ± 4.68 b | 47.68 ± 3.59 c | 42.51 ± 6.69 c | 40.08 ± 3.9 c | |
Resistant starch (RS%) | Diasang lahi | 81.17 ± 6.29 a | 10.26 ± 3.29 b | 15.66 ± 4.29 b | 17.85 ± 4.2 b | 23.96 ± 3.2 b | 50.22 ± 5.4 c |
Khaju lahi | 80.69 ± 6.3 a | 12.84 ± 2.4 b | 15.44 ± 3.49 b | 18.68 ± 4.39 b | 20.37 ± 4.3 b | 32.85 ± 5.39 c | |
Dhusuri bao | 83.69 ± 6.39 a | 11.61 ± 3.49 b | 19.51 ± 4.38 b | 48.48 ± 4.29 c | 56.09 ± 5.29 c | 17.71 ± 3.38 b | |
Omkar | 86.86 ± 6.39 a | 9.39 ± 2.49 b | 15.59 ± 4.29 b | 17.86 ± 3.49 b | 30.62 ± 5.29 b | 66.41 ± 6.39 c | |
Bili rajamudi | 85.02 ± 3.48 a | 12.41 ± 4.39 b | 16.37 ± 5.24 b | 29.10 ± 6.39 b | 30.62 ± 5.29 b | 42.89 ± 5.29 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, I.; Govindaraju, I.; Kunnel, S.; Managuli, V.; Mazumder, N. Effect of Storage Time and Temperature on Digestibility, Thermal, and Rheological Properties of Retrograded Rice. Gels 2023, 9, 142. https://doi.org/10.3390/gels9020142
Chakraborty I, Govindaraju I, Kunnel S, Managuli V, Mazumder N. Effect of Storage Time and Temperature on Digestibility, Thermal, and Rheological Properties of Retrograded Rice. Gels. 2023; 9(2):142. https://doi.org/10.3390/gels9020142
Chicago/Turabian StyleChakraborty, Ishita, Indira Govindaraju, Steffi Kunnel, Vishwanath Managuli, and Nirmal Mazumder. 2023. "Effect of Storage Time and Temperature on Digestibility, Thermal, and Rheological Properties of Retrograded Rice" Gels 9, no. 2: 142. https://doi.org/10.3390/gels9020142
APA StyleChakraborty, I., Govindaraju, I., Kunnel, S., Managuli, V., & Mazumder, N. (2023). Effect of Storage Time and Temperature on Digestibility, Thermal, and Rheological Properties of Retrograded Rice. Gels, 9(2), 142. https://doi.org/10.3390/gels9020142