Investigation of Polymer Gel Reinforced by Oxygen Scavengers and Nano-SiO2 for Flue Gas Flooding Reservoir
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oxygen Scavenger Reinforced Polymer Gel
2.1.1. Stability of Polymer
2.1.2. Long-Term Stability at Elevated Flue Gas Pressure
2.2. Nano-SiO2 Reinforced Polymer Gel
2.2.1. Polymer Stability
2.2.2. Gelation Performance
2.2.3. Long-Term Stability at Elevated Flue Gas Pressure
2.2.4. Structure of Gel
2.3. Creep Behaviour of Polymer Gel
2.4. Flow Experiment
2.4.1. Injection Performance
2.4.2. Plugging Performance
2.4.3. Mechanism of Gel Treatment
2.4.4. Design of Field Application
3. Conclusions
- Thiourea, which acts as an oxygen scavenger, inhibits the degradation of polymers in the gel, which in turn improves the long-term stability of bulk gel at elevated flue gas pressures.
- The interaction between nano-SiO2 and HPAM molecules by hydrogen bonding inhibits the entanglement of the polymer chains, which facilitates the dispersion and the long-term stability of polymers in flue gas environments.
- The gel with the addition of nanoparticles shows a firmer and more uniform microstructure compared with the traditional gel system. In addition, the additives improve the compressive properties of the gel, which still maintains its robust structure under the extensive deformation. As a result, the strength and long-term stability of gels are effectively improved under high pressure of flue gas in 180 days.
- Flow experiments indicate that the reinforced gel system is an effective plugging agent with satisfying scouring resistance, which is suitable for flue gas flooding reservoirs.
4. Materials and Methods
4.1. Materials
4.2. Experiment Methods
4.2.1. Gel Preparation and Evaluation
4.2.2. Characterization
4.2.3. Flooding Test
4.2.4. Visual Glass Model Experiment
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bender, S.; Akin, S. Flue gas injection for EOR and sequestration: Case study. J. Pet. Sci. Eng. 2017, 157, 1033–1045. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, B.; Guo, P.; Wang, S.; Liu, H.; Liu, Y.; Zhou, D.; Zhou, B. Investigation of flue gas water-alternating gas (flue gas-WAG) injection for enhanced oil recovery and multicomponent flue gas storage in the post-waterflooding reservoir. Pet. Sci. 2021, 18, 870–882. [Google Scholar] [CrossRef]
- Chen, H.; Li, H.; Li, Z.; Li, S.; Wang, Y.; Wang, J. Effects of matrix permeability and fracture on production characteristics and residual oil distribution during flue gas flooding in low permeability/tight reservoirs. J. Pet. Sci. Eng. 2020, 195, 107813. [Google Scholar] [CrossRef]
- Sarlak, M.; Farbod, A.; Nezhad, S.; Sahraei, E. Experimental investigation of CO2 in continuous and water alternating gas injection. Pet. Sci. Technol. 2021, 39, 165–174. [Google Scholar] [CrossRef]
- Bai, B.; Zhou, J.; Yin, M. A comprehensive review of polyacrylamide polymer gels for conformance control. Pet. Explor. Dev. 2015, 42, 525–532. [Google Scholar] [CrossRef]
- Lashari, Z.A.; Kang, W.; Yang, H.; Zhang, H.; Sarsenbekuly, B. Macro-Rheology and micro-rheological study of composite polymer gel at high salinity and acidic conditions for CO2 shut off treatment in harsh reservoirs for improving oil recovery. In Proceedings of the SPE/PAPG Pakistan Section Annual Technical Symposium and Exhibition, Islamabad, Pakistan, 18–20 November 2019. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, L.; Wang, C.; Li, S.; Yuan, X.; Liu, Y.; Meng, X.; Zou, J.; Wang, Q. Investigation of a high temperature gel system for application in saline oil and gas reservoirs for profile modification. J. Pet. Sci. Eng. 2020, 195, 107852. [Google Scholar] [CrossRef]
- Seright, R.; Brattekas, B. Water shutoff and conformance improvement: An introduction. Pet. Sci. 2021, 18, 450–478. [Google Scholar] [CrossRef]
- Tovar, F.D.; Barrufet, M.A.; Schechter, D.S. Long term stability of acrylamide based polymers during chemically assisted CO2 WAG EOR. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12–16 April 2014. [Google Scholar] [CrossRef]
- Sun, X.; Bai, B.; Long, Y.; Wang, Z. A comprehensive review of hydrogel performance under CO2 conditions for conformance control. J. Pet. Sci. Eng. 2019, 185, 106662. [Google Scholar] [CrossRef]
- Qiao, W.; Zhang, G.; Ge, J.; Li, J.; Jiang, P.; Pei, H. Influence study of flue gas on chromium acetate/HPAM gel in flue gas flooding reservoir. Pet. Sci. Technol. 2023, 41, 325–342. [Google Scholar] [CrossRef]
- Qiao, W.; Zhang, G.; Li, J.; Jiang, P.; Pei, H. Probing the effect and mechanism of flue gas on the performance of resorcinol/hexamethylenetetramine-based polymer gel in flue gas flooding reservoir. Gels 2022, 8, 772. [Google Scholar] [CrossRef]
- Seright, R.S.; Henrici, B.J. Xanthan stability at elevated temperatures. SPE Reserv. Eng. 1990, 5, 52–60. [Google Scholar] [CrossRef]
- Levitt, D.; Pope, G.A. Selection and screening of polymers for enhanced-oil recovery. In Proceedings of the SPE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 20–23 April 2008. [Google Scholar] [CrossRef]
- Gaillard, N.; Giovannetti, B.; Favero, C. Improved oil recovery using thermally and chemically protected compositions based on co- and ter-polymers containing acrylamide. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010. [Google Scholar] [CrossRef]
- Shupe, R.D. Chemical stability of polyacrylamide polymers. J. Pet. Technol. 1981, 33, 1513–1529. [Google Scholar] [CrossRef]
- Wellington, S.L. Biopolymer solution viscosity stabilization: Polymer degradation and antioxidant use. Soc. Pet. Eng. J. 1983, 23, 901–912. [Google Scholar] [CrossRef]
- Yu, Y.; Li, B.; Yang, G.; Ma, X. Thermal stability of polyacrylamide solution prepared by oilfield produced water. Pet. Explor. Dev. 2001, 28, 66–67. [Google Scholar] [CrossRef]
- Michael, F.M.; Fathima, A.; AlYemni, E.; Jin, H.; Almohsin, A.; Alsharaeh, E.H. Enhanced polyacrylamide polymer gels using zirconium hydroxide nanoparticles for water shutoff at high temperatures: Thermal and rheological investigations. Ind. Eng. Chem. Res. 2018, 57, 16347–16357. [Google Scholar] [CrossRef]
- Wu, Q.; Ge, J. Experimental investigation of the entanglement network and nonlinear viscoelastic behavior of a nano-SiO2 strengthened polymer gel. J. Mol. Liq. 2021, 339, 117288. [Google Scholar] [CrossRef]
- Zhu, D.; Bai, B.; Hou, J. Polymer gel systems for water management in high temperature petroleum reservoirs: A chemical review. Energy Fuels 2017, 31, 13063–13087. [Google Scholar] [CrossRef]
- Giraldo, L.J.; Giraldo, M.A.; Llanos, S.; Maya, G.; Zabala, R.D.; Nassar, N.N.; Franco, C.A.; Alvarado, V.; Cortés, F.B. The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions. J. Pet. Sci. Eng. 2017, 159, 841–852. [Google Scholar] [CrossRef]
- Zareie, C.; Bahramian, A.R.; Sefti, M.V.; Salehi, M.B. Network-gel strength relationship and performance improvement of polyacrylamide hydrogel using nano-silica; with regards to application in oil wells conditions. J. Mol. Liq. 2019, 278, 512–520. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, M.; Gao, M.; Song, X.; Dai, C. The experimental study of silica nanoparticles strengthened polymer gel system. J. Dispers. Sci. Technol. 2021, 42, 298–305. [Google Scholar] [CrossRef]
- Portehault, D.; Petit, L.; Pantoustier, N.; Ducouret, G.; Lafuma, F.; Hourdet, D. Hybrid thickeners in aqueous media. Colloids Surf. A 2006, 278, 26–32. [Google Scholar] [CrossRef]
- Zhu, D.; Han, Y.; Zhang, J.; Li, X.; Feng, Y. Enhancing rheological properties of hydrophobically associative polyacrylamide aqueous solutions by hybriding with silica nanoparticles. J. Appl. Polym. Sci. 2014, 131, 5829–5836. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, X.; Ke, Y. Effects of silica nanoparticle on the solution properties of hydrophobically associating polymer based on acrylamide and β-cyclodextrin. J. Mol. Liq. 2019, 296, 111885. [Google Scholar] [CrossRef]
- Lashari, Z.A.; Yang, H.; Zhu, Z.; Tang, X.; Cao, C.; Iqbal, M.W.; Kang, W. Experimental research of high strength thermally stable organic composite polymer gel. J. Mol. Liq. 2018, 263, 118–124. [Google Scholar] [CrossRef]
- Hamza, A.; Shamlooh, M.; Hussein, I.A.; Nasser, M.S.; Salehi, S. Rheology of triamine functionalized silica reinforced polymeric gels developed for conformance control applications. Energy Fuels 2020, 34, 1093–1098. [Google Scholar] [CrossRef]
- Shamlooh, M.; Hamza, A.; Hussein, I.A.; Nasser, M.S.; Magzoub, M.; Salehi, S. Investigation of the rheological properties of nanosilica-reinforced polyacrylamide/polyethyleneimine gels for wellbore strengthening at high reservoir temperatures. Energy Fuels 2019, 33, 6829–6836. [Google Scholar] [CrossRef]
- Pérez-Robles, S.; Cortés, F.B.; Franco, C.A. Effect of the nanoparticles in the stability of hydrolyzed polyacrylamide/resorcinol/formaldehyde gel systems for water shut-off/conformance control applications. J. Appl. Polym. Sci. 2019, 136, 47568. [Google Scholar] [CrossRef]
- Dai, C.; Chen, W.; You, Q.; Wang, H.; Zhe, Y.; He, L.; Jiao, B.; Wu, Y. A novel strengthened dispersed particle gel for enhanced oil recovery application. J. Ind. Eng. Chem. 2016, 41, 175–182. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, C.; Wang, K.; Zou, C.; Gao, M.; Fang, Y.; Zhao, M.; Wu, Y.; You, Q. Study on a novel cross-linked polymer gel strengthened with silica nanoparticles. Energy Fuels 2017, 31, 9152–9161. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, L.; Ge, J.; Jiang, P.; Zhu, X. Experimental research of syneresis mechanism of HPAM/Cr3+ gel. Colloids Surf. A 2015, 483, 96–103. [Google Scholar] [CrossRef]
- Guo, H.; Ge, J.; Li, L.; Zhang, G.; Li, Z.; Wang, W.; Liu, M. New insights and experimental investigation of high-temperature gel reinforced by nano-SiO2. Gels 2022, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; McCool, C.S.; Green, D.W.; Willhite, G.P.; Michnick, M.J. Reaction kinetics of the uptake of chromium (III) acetate by polyacrylamide. In Proceedings of the SPE Enhanced Oil Recovery Symposium, Tulsa, OK, USA, 17–21 April 2004. [Google Scholar] [CrossRef]
- Gao, H.; Wen, D.; Tarakina, N.V.; Liang, J.; Bushby, A.J.; Sukhorukov, G.B. Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules. Nanoscale 2016, 8, 5170–5180. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Zhang, G.; Ge, J.; Li, J.; Jiang, P.; Pei, H. Performance of chromic acetate-HPAM gel for flue gas mobility control in low-permeability reservoir. IOP Conf. Ser. Earth Environ. Sci. 2020, 526, 012074. [Google Scholar] [CrossRef]
Channel Type | Thickness/m | Range of PermeAbility/mD | Mean PermeAbility/mD | Volume /m3 | Proportion /% |
---|---|---|---|---|---|
First-level | 1.29 | 2021.6–6362.5 | 2432 | 1979.75 | 15.4 |
Second-level | 1.16 | 416.4–1576.1 | 796.3 | 1741.89 | 35.9 |
Third-level | 0.53 | 78.9–317.7 | 190.2 | 826.29 | 48.7 |
Well | First-Level Dominant Channel | Second-Level Dominant Channel | ||
---|---|---|---|---|
Volume of Channel /m3 | Volume of Gelant /m3 | Volume of Channel /m3 | Volume of Gelant /m3 | |
1 | 5729 | 2292 | 4704 | 1411 |
2 | 920 | 368 | 1697 | 509 |
3 | 3608 | 1443 | 4933 | 1480 |
4 | 6900 | 2760 | 7528 | 2258 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, W.; Zhang, G.; Jiang, P.; Pei, H. Investigation of Polymer Gel Reinforced by Oxygen Scavengers and Nano-SiO2 for Flue Gas Flooding Reservoir. Gels 2023, 9, 268. https://doi.org/10.3390/gels9040268
Qiao W, Zhang G, Jiang P, Pei H. Investigation of Polymer Gel Reinforced by Oxygen Scavengers and Nano-SiO2 for Flue Gas Flooding Reservoir. Gels. 2023; 9(4):268. https://doi.org/10.3390/gels9040268
Chicago/Turabian StyleQiao, Wenli, Guicai Zhang, Ping Jiang, and Haihua Pei. 2023. "Investigation of Polymer Gel Reinforced by Oxygen Scavengers and Nano-SiO2 for Flue Gas Flooding Reservoir" Gels 9, no. 4: 268. https://doi.org/10.3390/gels9040268
APA StyleQiao, W., Zhang, G., Jiang, P., & Pei, H. (2023). Investigation of Polymer Gel Reinforced by Oxygen Scavengers and Nano-SiO2 for Flue Gas Flooding Reservoir. Gels, 9(4), 268. https://doi.org/10.3390/gels9040268