Conducting ITO Nanoparticle-Based Aerogels—Nonaqueous One-Pot Synthesis vs. Particle Assembly Routes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nonaqueous One-Pot Synthesis of Aerogel A
2.2. Synthesis of Nanoparticles and Their Assembly into Aerogels B and C
2.3. Investigation of Porosity and Conductivity of the Aerogels
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Nonaqueous One-Pot Sol–Gel Synthesis
Synthesis of ITO Aerogel
4.3. Nonaqueous Sol–Gel Synthesis of the Nanoparticles and Their Assembly into Aerogels
4.3.1. Autoclave Synthesis of ITO Nanoparticles
4.3.2. Microwave Synthesis of ITO Nanoparticles
4.3.3. ITO Dispersion, Gelling and Supercritical Drying
4.4. Heat Treatment
4.5. Characterization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilsum, C. Flat-panel electronic displays: A triumph of physics, chemistry and engineering. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1027–1082. [Google Scholar] [CrossRef]
- Wood, V.; Panzer, M.J.; Caruge, J.-M.; Halpert, J.E.; Bawendi, M.G.; Bulović, V. Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. Nano Lett. 2010, 10, 24–29. [Google Scholar] [CrossRef]
- Pattantyus-Abraham, A.G.; Kramer, I.J.; Barkhouse, A.R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M.K.; Grätzel, M.; et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 2010, 4, 3374–3380. [Google Scholar] [CrossRef]
- Müller, V.; Rasp, M.; Štefanić, G.; Ba, J.; Günther, S.; Rathousky, J.; Niederberger, M.; Fattakhova-Rohlfing, D. Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via Nonaqueous Sol–Gel Procedure. Chem. Mater. 2009, 21, 5229–5236. [Google Scholar] [CrossRef]
- Aegerter, M.A.; Al-Dahoudi, N.; Solieman, A.; Kavak, H.; Oliveira, P. Transparent Conducting Coatings made by Chemical Nanotechnology Processes. Mol. Cryst. Liq. Cryst. 2004, 417, 105–114. [Google Scholar] [CrossRef]
- Goebbert, C.; Nonninger, R.; Aegerter, M.; Schmidt, H. Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions. Thin Solid Films 1999, 351, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Epifani, M.; Díaz, R.; Arbiol, J.; Siciliano, P.; Morante, J.R. Solution Synthesis of Thin Films in the SnO2–In2O3 System: A Case Study of the Mixing of Sol–Gel and Metal-Organic Solution Processes. Chem. Mater. 2006, 18, 840–846. [Google Scholar] [CrossRef]
- Yu, Z.; Perera, I.R.; Daeneke, T.; Makuta, S.; Tachibana, Y.; Jasieniak, J.J.; Mishra, A.; Bäuerle, P.; Spiccia, L.; Bach, U. Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells. NPG Asia Mater. 2016, 8, e305. [Google Scholar] [CrossRef]
- Ginley, D.S.; Bright, C. Transparent Conducting Oxides. MRS Bull. 2000, 25, 15–18. [Google Scholar] [CrossRef]
- Hammarberg, E.; Prodi-Schwab, A.; Feldmann, C. Microwave-assisted synthesis of indium tin oxide nanocrystals in polyol media and transparent, conductive layers thereof. Thin Solid Films 2008, 516, 7437–7442. [Google Scholar] [CrossRef]
- Aegerter, M.A.; Puetz, J.; Gasparro, G.; Al-Dahoudi, N. Versatile wet deposition techniques for functional oxide coatings. Opt. Mater. 2004, 26, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J. Appl. Phys. 2005, 98, 43704. [Google Scholar] [CrossRef] [Green Version]
- Rainwater, B.H.; Liu, M.; Liu, M. A more efficient anode microstructure for SOFCs based on proton conductors. Int. J. Hydrogen Energy 2012, 37, 18342–18348. [Google Scholar] [CrossRef]
- Zeng, G.; Shi, N.; Hess, M.; Chen, X.; Cheng, W.; Fan, T.; Niederberger, M. A General Method of Fabricating Flexible Spinel-Type Oxide/Reduced Graphene Oxide Nanocomposite Aerogels as Advanced Anodes for Lithium-Ion Batteries. ACS Nano 2015, 9, 4227–4235. [Google Scholar] [CrossRef] [PubMed]
- Rechberger, F.; Niederberger, M. Synthesis of aerogels: From molecular routes to 3-dimensional nanoparticle assembly. Nanoscale Horiz. 2017, 2, 6–30. [Google Scholar] [CrossRef] [PubMed]
- Baghi, R.; Zhang, K.; Wang, S.; Hope-Weeks, L.J. Conductivity tuning of the ITO sol-gel materials by adjusting the tin oxide concentration, morphology and the crystalline size. Microporous Mesoporous Mater. 2017, 244, 258–263. [Google Scholar] [CrossRef]
- Rechberger, F.; Heiligtag, F.J.; Süess, M.J.; Niederberger, M. Assembly of BaTiO3 nanocrystals into macroscopic aerogel monoliths with high surface area. Angew. Chem. Int. Ed. 2014, 53, 6823–6826. [Google Scholar] [CrossRef]
- Rolison, D.R.; Dunn, B. Electrically conductive oxide aerogels: New materials in electrochemistry. J. Mater. Chem. 2001, 11, 963–980. [Google Scholar] [CrossRef]
- Davis, M.; Zhang, K.; Wang, S.; Hope-Weeks, L.J. Enhanced electrical conductivity in mesoporous 3D indium-tin oxide materials. J. Mater. Chem. 2012, 22, 20163–20165. [Google Scholar] [CrossRef]
- Gash, A.E.; Tillotson, T.M.; Satcher, J.H.; Poco, J.F.; Hrubesh, L.W.; Simpson, R.L. Use of Epoxides in the Sol-Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts. Chem. Mater. 2001, 13, 999–1007. [Google Scholar] [CrossRef]
- Heiligtag, F.J.; Cheng, W.; de Mendonça, V.R.; Süess, M.J.; Hametner, K.; Günther, D.; Ribeiro, C.; Niederberger, M. Self-Assembly of Metal and Metal Oxide Nanoparticles and Nanowires into a Macroscopic Ternary Aerogel Monolith with Tailored Photocatalytic Properties. Chem. Mater. 2014, 26, 5576–5584. [Google Scholar] [CrossRef]
- Rechberger, F.; Städler, R.; Tervoort, E.; Niederberger, M. Strategies to improve the electrical conductivity of nanoparticle-based antimony-doped tin oxide aerogels. J. Sol-Gel Sci. Technol. 2016, 80, 660–666. [Google Scholar] [CrossRef]
- Rechberger, F.; Ilari, G.; Niederberger, M. Assembly of antimony doped tin oxide nanocrystals into conducting macroscopic aerogel monoliths. Chem. Commun. 2014, 50, 13138–13141. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, M.; Garnweitner, G.; Buha, J.; Polleux, J.; Ba, J.; Pinna, N. Nonaqueous synthesis of metal oxide nanoparticles: Review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J. Sol-Gel Sci. Technol. 2006, 40, 259–266. [Google Scholar] [CrossRef]
- Stolzenburg, P.; Garnweitner, G. Experimental and numerical insights into the formation of zirconia nanoparticles: A population balance model for the nonaqueous synthesis. React. Chem. Eng. 2017, 2, 337–348. [Google Scholar] [CrossRef]
- Garnweitner, G.; Tsedev, N.; Dierke, H.; Niederberger, M. Benzylamines as Versatile Agents for the One-Pot Synthesis and Highly Ordered Stacking of Anatase Nanoplatelets. Eur. J. Inorg. Chem. 2008, 2008, 890–895. [Google Scholar] [CrossRef]
- Pinna, N.; Garnweitner, G.; Antonietti, M.; Niederberger, M. A general nonaqueous route to binary metal oxide nanocrystals involving a C–C bond cleavage. J. Am. Chem. Soc. 2005, 127, 5608–5612. [Google Scholar] [CrossRef] [PubMed]
- Zellmer, S.; Kockmann, A.; Dosch, I.; Temel, B.; Garnweitner, G. Aluminum zinc oxide nanostructures with customized size and shape by non-aqueous synthesis. CrystEngComm 2015, 17, 6878–6883. [Google Scholar] [CrossRef] [Green Version]
- Ungerer, J.; Thurm, A.-K.; Meier, M.; Klinge, M.; Garnweitner, G.; Nirschl, H. Development of a growth model for aluminum-doped zinc oxide nanocrystal synthesis via the benzylamine route. J. Nanopart. Res. 2019, 21, 106. [Google Scholar] [CrossRef]
- Grote, C.; Cheema, T.A.; Garnweitner, G. Comparative Study of Ligand Binding during the Postsynthetic Stabilization of Metal Oxide Nanoparticles. Langmuir 2012, 28, 14395–14404. [Google Scholar] [CrossRef]
- Grote, C.; Chiad, K.J.; Vollmer, D.; Garnweitner, G. Unspecific ligand binding yielding stable colloidal ITO-nanoparticle dispersions. Chem. Commun. 2012, 48, 1464–1466. [Google Scholar] [CrossRef]
- Cheema, T.A.; Garnweitner, G. Phase-controlled synthesis of ZrO2 nanoparticles for highly transparent dielectric thin films. CrystEngComm 2014, 16, 3366–3375. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-S.; Choi, S.-C. Solvent effect on synthesis of indium tin oxide nano-powders by a solvothermal process. J. Eur. Ceram. Soc. 2005, 25, 3307–3314. [Google Scholar] [CrossRef]
- Emons, T.T.; Li, J.; Nazar, L.F. Synthesis and characterization of mesoporous indium tin oxide possessing an electronically conductive framework. J. Am. Chem. Soc. 2002, 124, 8516–8517. [Google Scholar] [CrossRef] [PubMed]
- Ba, J.; Rohlfing, D.F.; Feldhoff, A.; Brezesinski, T.; Djerdj, I.; Wark, M.; Niederberger, M. Nonaqueous Synthesis of Uniform Indium Tin Oxide Nanocrystals and Their Electrical Conductivity in Dependence of the Tin Oxide Concentration. Chem. Mater. 2006, 18, 2848–2854. [Google Scholar] [CrossRef]
- Garnweitner, G.; Ghareeb, H.O.; Grote, C. Small-molecule in situ stabilization of TiO2 nanoparticles for the facile preparation of stable colloidal dispersions. Colloids Surf. A Physicochem. Eng. Asp. 2010, 372, 41–47. [Google Scholar] [CrossRef]
- Erdem, D.; Shi, Y.; Heiligtag, F.J.; Kandemir, A.C.; Tervoort, E.; Rupp, J.L.M.; Niederberger, M. Liquid-phase deposition of ferroelectrically switchable nanoparticle-based BaTiO3 films of macroscopically controlled thickness. J. Mater. Chem. C 2015, 3, 9833–9841. [Google Scholar] [CrossRef]
- Rechberger, F.; Mercandetti, C.; Tervoort, E.; Niederberger, M. Colloidal Nanocrystal-Based BaTiO3 Xerogels as Green Bodies: Effect of Drying and Sintering at Low Temperatures on Pore Structure and Microstructures. Langmuir 2017, 33, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Alothman, Z. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef] [Green Version]
- Carmody, O.; Frost, R.; Xi, Y.; Kokot, S. Surface characterisation of selected sorbent materials for common hydrocarbon fuels. Surf. Sci. 2007, 601, 2066–2076. [Google Scholar] [CrossRef] [Green Version]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Cao, G. Synthesis, properties & applications. In Nanostructures & Nanomaterials; Imperial College Press: London, UK, 2004; ISBN 978-1-86094-596-0. [Google Scholar] [CrossRef]
- Hüsing, N.; Schubert, U. Aerogels-Airy Materials: Chemistry, Structure, and Properties. Angew. Chem. Int. Ed. 1998, 37, 22–45. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Li, G.; Petruska, M.A.; Paine, D.C.; Sun, S. A facile solution-phase approach to transparent and conducting ITO nanocrystal assemblies. J. Am. Chem. Soc. 2012, 134, 13410–13414. [Google Scholar] [CrossRef] [PubMed]
- Landers, J.; Gor, G.Y.; Neimark, A.V. Density functional theory methods for characterization of porous materials. Colloids Surf. A Physicochem. Eng. Asp. 2013, 437, 3–32. [Google Scholar] [CrossRef]
- Haldor Topsoe a/s Semiconductor Division, Geometric Factors in Four Point Resistivity Measurement, Bulletin No. 472-13, 2nd Edition, Vedbaek. 1968. Available online: https://www.iiserkol.ac.in/~ph324/StudyMaterials/GeometricFactors4ProbeResistivity.PDF (accessed on 23 March 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang Bastian, S.; Rechberger, F.; Zellmer, S.; Niederberger, M.; Garnweitner, G. Conducting ITO Nanoparticle-Based Aerogels—Nonaqueous One-Pot Synthesis vs. Particle Assembly Routes. Gels 2023, 9, 272. https://doi.org/10.3390/gels9040272
Sang Bastian S, Rechberger F, Zellmer S, Niederberger M, Garnweitner G. Conducting ITO Nanoparticle-Based Aerogels—Nonaqueous One-Pot Synthesis vs. Particle Assembly Routes. Gels. 2023; 9(4):272. https://doi.org/10.3390/gels9040272
Chicago/Turabian StyleSang Bastian, Samira, Felix Rechberger, Sabrina Zellmer, Markus Niederberger, and Georg Garnweitner. 2023. "Conducting ITO Nanoparticle-Based Aerogels—Nonaqueous One-Pot Synthesis vs. Particle Assembly Routes" Gels 9, no. 4: 272. https://doi.org/10.3390/gels9040272
APA StyleSang Bastian, S., Rechberger, F., Zellmer, S., Niederberger, M., & Garnweitner, G. (2023). Conducting ITO Nanoparticle-Based Aerogels—Nonaqueous One-Pot Synthesis vs. Particle Assembly Routes. Gels, 9(4), 272. https://doi.org/10.3390/gels9040272