Probing the Effect of Young’s Modulus on the Reservoir Regulation Abilities of Dispersed Particle Gels
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Influence of Young’s Modulus on the DPG Particle System Reservoir Regulation Effects
2.2. The Effects of Reservoir Conditions (Temperature and Salinity) on the Young’s Moduli of the DPG Particle Systems
3. Conclusions
4. Materials and Methods
4.1. Materials and Devices
4.2. Preparation and Characterization of DPG Particles with Different Mechanical Strengths
4.3. Variation in Migration Performance of the DPG Particles with Young’s Modulus
4.4. Variation in Profile Control Capacity of the DPG Particles with Young’s Modulus
4.5. Variation in Enhanced Oil Recovery Ability of the DPG Particles with Young’s Modulus
4.6. The Effect of Reservoir Environment on the Young’s Modulus of the DPG Particles
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rezaei Doust, A.; Puntervold, T.; Strand, S.; Austad, T. Smart Water as Wettability Modifier in Carbonate and Sandstone: A Discussion of Similarities/Differences in the Chemical Mechanisms. Energy Fuels 2009, 23, 4479–4485. [Google Scholar] [CrossRef]
- Ebrahim, T.; Mohsen, V.S.; Mahdi, S.M.; Esmaeel, K.T.; Saeb, A. Performance of low-salinity water flooding for enhanced oil recovery improved by SiO2 nanoparticles. Pet. Sci. 2019, 16, 357–365. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, G.; Liu, G.; Gao, B.; Liu, Q.; Wang, H.; Liang, X.; Wang, R. Research progress and key scientific issues of continental shale oil in China. Acta Petrol. Sin. 2021, 42, 821–835. [Google Scholar]
- Nadeem, H.; Imran, M.; Mehmood, K.; Batool, A.; Rafiq, Z. JOJ Material Sci Enhanced Antiangiogenic Activity of Silver Nano-Particles Grafted on Graphene Oxide. J. Mater. Sci. Eng. A 2022, 7, 555703. [Google Scholar] [CrossRef]
- Rafi, M.N.; Imran, M.; Nadeem, H.A.; Abbas, A.; Pervaiz, M.; Khan, W.-u.-d.; Ullah, S.; Hussain, S.; Saeed, Z. Comparative Influence of Biochar and Doped Biochar with Si-NPs on the Growth and Anti-Oxidant Potential of Brassica rapa L. under cd Toxicity. Silicon 2022, 14, 11699–11714. [Google Scholar] [CrossRef]
- Shaheen, S.; Saeed, Z.; Ahmad, A.; Pervaiz, M.; Younas, U.; Mahmood Khan, R.R.; Luque, R.; Rajendran, S. Green synthesis of graphene-based metal nanocomposite for electro and photocatalytic activity; recent advancement and future prospective. Chemosphere 2023, 311, 136982. [Google Scholar] [CrossRef]
- Briggs, M.A.; Wang, C.; Day-Lewis, F.D.; Williams, K.H.; Dong, W.; Lane, J.W. Return flows from beaver ponds enhance floodplain-to-river metals exchange in alluvial mountain catchments. Sci. Total Environ. 2019, 685, 357–369. [Google Scholar] [CrossRef]
- Liu, R.; Gou, R.; Pu, W.-f.; Ren, H.; Du, D.-j.; Chen, P.; Mei, Z.-l. Visual Laminations Combined with Nuclear Magnetic Resonance to Study the Micro-Unrecovered Oil Distribution and Displacement Behavior of Chemical Flooding in a Complex Conglomerate. Energy Fuels 2019, 33, 4041–4052. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Liu, Y.; Deng, Q.; Zhang, D. A new method for plugging the dominant seepage channel after polymer flooding and its mechanism: Fracturing–seepage–plugging. e-Polymers 2021, 21, 691–701. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Z.; Liu, Z.; Li, B.; Zhang, Q.; Zheng, L.; Song, Y.; Husein, M.M. Characteristics of CO2 foam plugging and migration: Implications for geological carbon storage and utilization in fractured reservoirs. Sep. Purif. Technol. 2022, 294, 121190. [Google Scholar] [CrossRef]
- Du, D.-j.; Pu, W.-f.; Jin, F.; Hou, D.-D.; Shi, L. Experimental investigation on plugging and transport characteristics of Pore-Scale microspheres in heterogeneous porous media for enhanced oil recovery. J. Dispers. Sci. Technol. 2020, 42, 1152–1162. [Google Scholar] [CrossRef]
- Dai, C.; Zhao, G.; Zhao, M.; You, Q. Preparation of dispersed particle gel (DPG) through a simple high speed shearing method. Molecules 2012, 17, 14484–14489. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bai, B.J. Preformed-Particle-Gel Placement and Plugging Performance in Fractures with Tips. SPE J. 2018, 23, 2316–2326. [Google Scholar] [CrossRef]
- Yang, C.; Shao, Q.; He, J.; Jiang, B. Preparation of monodisperse magnetic polymer microspheres by swelling and thermolysis technique. Langmuir 2010, 26, 5179–5183. [Google Scholar] [CrossRef] [PubMed]
- Gussenov, I.; Nuraje, N.; Kudaibergenov, S. Bulk gels for permeability reduction in fractured and matrix reservoirs. Energy Rep. 2019, 5, 733–746. [Google Scholar] [CrossRef]
- Aldhaheri, M.; Wei, M.; Zhang, N.; Bai, B. Field design guidelines for gel strengths of profile-control gel treatments based on reservoir type. J. Petrol. Sci. Eng. 2020, 194, 107482. [Google Scholar] [CrossRef]
- Jin, F.-Y.; Jiang, T.-T.; Varfolomeev, M.A.; Yuan, C.; Zhao, H.-Y.; He, L.; Jiao, B.-L.; Du, D.-J.; Xie, Q. Novel preformed gel particles with controllable density and its implications for EOR in fractured-vuggy carbonated reservoirs. J. Pet. Sci. Eng. 2021, 205, 108903. [Google Scholar] [CrossRef]
- Hua, Z.; Lin, M.; Dong, Z.; Li, M.; Zhang, G.; Yang, J. Study of deep profile control and oil displacement technologies with nanoscale polymer microspheres. J. Colloid Interface Sci. 2014, 424, 67–74. [Google Scholar] [CrossRef]
- Varel, F.T.; Dai, C.; Shaikh, A.; Li, J.; Sun, N.; Yang, N.; Zhao, G. Chromatography and oil displacement mechanism of a dispersed particle gel strengthened Alkali/Surfactant/Polymer combination flooding system for enhanced oil recovery. Colloids Surf. A 2021, 610, 125642. [Google Scholar] [CrossRef]
- Bai, B.; Zhou, J.; Yin, M. A comprehensive review of polyacrylamide polymer gels for conformance control. Pet. Explor. Dev. 2015, 42, 481–487. [Google Scholar] [CrossRef]
- Wang, L.; Long, Y.; Ding, H.; Geng, J.; Bai, B. Mechanically robust re-crosslinkable polymeric hydrogels for water management of void space conduits containing reservoirs. Chem. Eng. J. 2017, 317, 952–960. [Google Scholar] [CrossRef]
- Seright, R.; Brattekas, B. Water shutoff and conformance improvement: An introduction. Pet. Sci. 2021, 18, 450–478. [Google Scholar] [CrossRef]
- Li, G.; Yu, Y.; Han, W.; Zhu, L.; Si, T.; Wang, H.; Li, K.; Sun, Y.; He, Y. Solvent evaporation self-motivated continual synthesis of versatile porous polymer microspheres via foaming-transfer. Colloids Surf. A 2021, 615, 126239. [Google Scholar] [CrossRef]
- Li, J.; Niu, L.; Wu, W.; Sun, M. The Reservoir Adaptability and Oil Displacement Mechanism of Polymer Microspheres. Polymers 2020, 12, 885. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, C.; Wang, K.; Zhao, M.; Gao, M.; Yang, Z.; Fang, J.; Wu, Y. Investigation on Preparation and Profile Control Mechanisms of the Dispersed Particle Gels (DPG) Formed from Phenol–Formaldehyde Cross-linked Polymer Gel. Ind. Eng. Chem. Res. 2016, 55, 6284–6292. [Google Scholar] [CrossRef]
- Li, W.; Wei, F.; Xiong, C.; Ouyang, J.; Zhao, G.; Shao, L.; Dai, M. A novel binary compound flooding system based on DPG particles for enhancing oil recovery. Arab. J. Geosci. 2019, 12, 256. [Google Scholar] [CrossRef]
- Zhao, G.; Dai, C.; You, Q. Characteristics and displacement mechanisms of the dispersed particle gel soft heterogeneous compound flooding system. Pet. Explor. Dev. 2018, 45, 464–473. [Google Scholar] [CrossRef]
- Dai, C.; Liu, Y.; Zou, C.; You, Q.; Yang, S.; Zhao, M.; Zhao, G.; Wu, Y.; Sun, Y. Investigation on matching relationship between dispersed particle gel (DPG) and reservoir pore-throats for in-depth profile control. Fuel 2017, 207, 109–120. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, C.; Zhou, D.; Li, H.; Gao, M.; Zhao, G.; Dai, C. Novel Chemical Flooding System Based on Dispersed Particle Gel Coupling In-Depth Profile Control and High Efficient Oil Displacement. Energy Fuels 2019, 33, 3123–3132. [Google Scholar] [CrossRef]
- Brattekas, B.; Haugen, A.; Graue, A.; Seright, R.S. Gel Dehydration by Spontaneous Imbibition of Brine from Aged Polymer Gel. SPE J. 2014, 19, 122–134. [Google Scholar] [CrossRef]
- Zhao, M.; He, H.; Dai, C.; Sun, Y.; Fang, Y.; Liu, Y.; You, Q.; Zhao, G.; Wu, Y. Enhanced Oil Recovery Study of a New Mobility Control System on the Dynamic Imbibition in a Tight Oil Fracture Network Model. Energy Fuels 2018, 32, 2908–2915. [Google Scholar] [CrossRef]
- Guvendiren, M.; Heiney, P.A.; Yang, S. Precipitated Calcium Carbonate Hybrid Hydrogels: Structural and Mechanical Properties. Macromolecules 2009, 42, 6606–6613. [Google Scholar] [CrossRef]
- Chen, Y.H.; Ye, L. Structure and Properties of PP/POE/HDPE Blends. J. Appl. Polym. Sci. 2011, 121, 1013–1022. [Google Scholar] [CrossRef]
- Aranburu, N.; Eguiazábal, J.I.; Guerrica-Echevarria, G. The effects of the location of organoclay on the structure and mechanical properties of compatibilized polypropylene/polyamide-12 ternary nanocomposites. Polym. Eng. Sci. 2018, 58, 830–838. [Google Scholar] [CrossRef]
- Dokukin, M.E.; Sokolov, I. Quantitative Mapping of the Elastic Modulus of Soft Materials with HarmoniX and Peak Force QNM AFM Modes. Langmuir 2012, 28, 16060–16071. [Google Scholar] [CrossRef]
- Galluzzi, M.; Biswas, C.S.; Wu, Y.H.; Wang, Q.; Du, B.; Stadler, F.J. Space-resolved quantitative mechanical measurements of soft and supersoft materials by atomic force microscopy. NPG Asia Mater. 2016, 8, e327. [Google Scholar] [CrossRef]
- Dai, C.; Zhu, Z.; Li, L.; Liu, J.; Chen, J. Influence of Young’s Moduli of Micro and Nano Scale Dispersed Particle Gels on Plugging Performances. J. Southwest Petr. Univ. 2021, 43, 184–192. [Google Scholar]
- Zhu, Z.-X.; Li, L.; Liu, J.-W.; Chen, J.; Xu, Z.-Z.; Wu, Y.-N.; Dai, C.-L. Probing the effect of Young’s modulus on the plugging performance of micro-nano-scale dispersed particle gels. Pet. Sci. 2022, 19, 688–696. [Google Scholar] [CrossRef]
- Zhao, G.; Li, J.; Gu, C.; Li, L.; Sun, Y.; Dai, C. Dispersed Particle Gel-Strengthened Polymer/Surfactant as a Novel Combination Flooding System for Enhanced Oil Recovery. Energy Fuels 2018, 32, 11317–11327. [Google Scholar] [CrossRef]
- Fang, J.C.; Zhang, X.; He, L.; Zhao, G.; Dai, C.L. Experimental research of hydroquinone (HQ)/hexamethylene tetramine (HMTA) gel for water plugging treatments in high-temperature and high-salinity reservoirs. J. Appl. Polym. Sci. 2017, 134, 9. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, F.J.; Li, J.J.; Yang, K.; Zhang, L.F.; Fan, F. Evaluation of the oil/water selective plugging performance of nano-polymer microspheres in fractured carbonate reservoirs. J. Zhejiang Univ-SC A 2019, 20, 714–726. [Google Scholar] [CrossRef]
- Yang, H.B.; Iqbal, M.W.; Lashari, Z.A.; Cao, C.X.; Tang, X.C.; Kang, W.L. Experimental research on amphiphilic polymer/organic chromium gel for high salinity reservoirs. Colloid Surf. A-Physicochem. Eng. Asp. 2019, 582, 8. [Google Scholar] [CrossRef]
- Yang, J.; Lei, Z.; Dong, B.; Ai, Z.Q.; Peng, L.; Xie, G. Synthesis and Plugging Performance of Poly (MMA-BA-ST) as a Plugging Agent in Oil-Based Drilling Fluid. Energies 2022, 15, 7626. [Google Scholar] [CrossRef]
- Wang, Z.B.; Liu, Y.T.; Huang, W.A.; Yang, X.; Liu, Z.; Zhang, X.S. Preparation and Performance Evaluation of a Plugging Agent with an Interpenetrating Polymer Network. Gels 2023, 9, 205. [Google Scholar] [CrossRef]
- Nie, X.R.; Chen, J.B.; Cao, Y.; Zhang, J.Y.; Zhao, W.J.; He, Y.L.; Hou, Y.Y.; Yuan, S.M. Investigation on Plugging and Profile Control of Polymer Microspheres as a Displacement Fluid in Enhanced Oil Recovery. Polymers 2019, 11, 1993. [Google Scholar] [CrossRef]
- Deng, B.; Liu, W.; Gu, J.W.; Song, Y.A.; Liu, C.; Ruan, B.X.; Chen, B.W. Experimental study of the hydroquinone (HQ)-hexamethylenetetramine (HMTA) gel system for conformance improvement in extremely high-temperature reservoirs. J. Appl. Polym. Sci. 2022, 139, e52845. [Google Scholar] [CrossRef]
- Tang, X.F.; Yang, L.M.; Liu, Y.Z.; Li, Z.Y.; Chang, Z.L.; Li, Y.K.; Wei, F.L. A new in-depth fluid diverting agent of inorganic gel coating. Pet. Explor. Dev. 2012, 39, 82–87. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, Z.; Chen, W.; Ma, H.; Zhai, D.; Ren, Z. The current research situation and development trend of particle profile-control plugging agents. Oil Drill. Prod. Technol. 2015, 37, 105–112. [Google Scholar]
- Yang, H.B.; Zhou, B.B.; Zhu, T.Y.; Wang, P.X.; Zhang, X.F.; Wang, T.Y.; Wu, F.P.; Zhang, L.; Kang, W.L.; Ketova, Y.A.; et al. Conformance control mechanism of low elastic polymer microspheres in porous medium. J. Petrol. Sci. Eng. 2021, 196, 107708. [Google Scholar] [CrossRef]
- Sagbana, P.I.; Abushaikha, A.S. A comprehensive review of the chemical-based conformance control methods in oil reservoirs. J. Pet. Explor. Prod. Technol. 2021, 11, 2233–2257. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, Y.; Liang, S.; Tan, S.; Sun, Z.; Yu, Y. Experimental study on surface-active polymer flooding for enhanced oil recovery: A case study of Daqing placanticline oilfield, NE China. Pet. Explor. Dev. 2019, 46, 1138–1147. [Google Scholar] [CrossRef]
- Zhao, G.; Dai, C.; Chen, A.; Yan, Z.; Zhao, M. Experimental study and application of gels formed by nonionic polyacrylamide and phenolic resin for in-depth profile control. J. Petrol. Sci. Eng. 2015, 135, 552–560. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Huang, Q.-A.; Yu, H.; Wang, J. The influence of surface effects on size-dependent mechanical properties of silicon nanobeams at finite temperature. J. Phys. D 2009, 42, 045409. [Google Scholar] [CrossRef]
- Malakooti, S.; Malakooti, R.; Valavi, M.H. Steady State Thermoelasticity of Hollow Nanospheres. J. Comput. Theor. Nanosci. 2011, 8, 1727–1731. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; He, Q.; Tan, X. Experimental study and application of anti-salt polymer aqueous solutions prepared by produced water for low-permeability reservoirs. J. Petrol. Sci. Eng. 2019, 175, 480–488. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, H.; Zheng, W.; Li, X.; Wang, F.; Li, X.; Zhang, D.; Turtabayev, S.; Kang, W. Research on synthesis and salt thickening behavior of a binary copolymer amphiphilic polymer. J. Petrol. Sci. Eng. 2021, 204, 108713. [Google Scholar] [CrossRef]
- Sun, Y.J.; Akhremitchev, B.; Walker, G.C. Using the adhesive interaction between atomic force microscopy tips and polymer surfaces to measure the elastic modulus of compliant samples. Langmuir 2004, 20, 5837–5845. [Google Scholar] [CrossRef]
- Tan, S.S.; Sherman, R.L.; Ford, W.T. Nanoscale compression of polymer microspheres by atomic force microscopy. Langmuir 2004, 20, 7015–7020. [Google Scholar] [CrossRef]
- Peng, X.; Huang, J.; Deng, H.; Xiong, C.; Fang, J. A multi-sphere indentation method to determine Young’s modulus of soft polymeric materials based on the Johnson–Kendall–Roberts contact model. Meas. Sci. Technol. 2011, 22, 027003. [Google Scholar] [CrossRef]
- Zhu, X.; Siamantouras, E.; Liu, K.K.; Liu, X. Determination of work of adhesion of biological cell under AFM bead indentation. J. Mech. Behav. Biomed. Mater. 2016, 56, 77–86. [Google Scholar] [CrossRef]
- Cheng, L.; Qin, Y.; Gao, K.J.; Zhang, L.Y.; Zhou, J.S.; Zhang, D.X.; Liao, R.Q.; Li, Z. Experimental Investigation of a Novel Nanocomposite Particle Gel for Water Shutoff Treatment in Mature Oilfields. ACS Omega 2022, 7, 8887–8895. [Google Scholar] [CrossRef]
- Liao, K.L.; Wei, M.; Fu, L.P.; Ma, Q.L.; An, J.N.; Bai, J.M.; Wang, M.L.; He, Y.F. Study on the Relationship between the Relative Molecular Mass of a Polymer Clay Stabilizer and the Permeability of a Tight Reservoir. ACS Omega 2022, 7, 25751–25759. [Google Scholar] [CrossRef]
Formula of Bulk Gels | E of DPG Particle System, kPa |
---|---|
0.2% polymer + 0.6% cross-linker | 0.082 |
0.25% polymer + 0.7% cross-linker | 0.19 |
0.3% polymer + 0.8% cross-linker | 0.257 |
0.35% polymer + 0.9% cross-linker | 0.762 |
0.4% polymer + 1.0% cross-linker | 1.222 |
0.45% polymer + 1.1% cross-linker | 1.723 |
Formula | E of DPG Particles System/kPa | Plugging Rate | Residual Resistance Coefficient Value | ||||
---|---|---|---|---|---|---|---|
Measuring Point 1 | Measuring Point 2 | Measuring Point 1 | Measuring Point 1 | Measuring Point 2 | Measuring Point 3 | ||
0.2% polymer + 0.6% cross-linker | 0.082 | 79.2 | 23.47 | 25.68 | 2.95 | 1.11 | 1.23 |
0.25% polymer + 0.7% cross-linker | 0.19 | 85.51 | 83.74 | 75.42 | 2.29 | 1.08 | 1.08 |
0.3% polymer + 0.8% cross-linker | 0.257 | 90.57 | 91.06 | 90.59 | 3.66 | 3.31 | 3.16 |
0.35% polymer + 0.9% cross-linker | 0.762 | 95.35 | 95.33 | 95.28 | 12.07 | 9.41 | 8.21 |
0.4% polymer + 1.0% cross-linker | 1.222 | 96.67 | 87.79 | 44.71 | 8.88 | 5.71 | 1.29 |
0.45% polymer + 1.1% cross-linker | 1.723 | 97.66 | 62.11 | 28.06 | 27.03 | 1.04 | 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhu, Z.; Jiang, T.; Liu, J.; Dong, Y.; Wu, Y.; Zhao, M.; Dai, C.; Li, L. Probing the Effect of Young’s Modulus on the Reservoir Regulation Abilities of Dispersed Particle Gels. Gels 2023, 9, 402. https://doi.org/10.3390/gels9050402
Wang Z, Zhu Z, Jiang T, Liu J, Dong Y, Wu Y, Zhao M, Dai C, Li L. Probing the Effect of Young’s Modulus on the Reservoir Regulation Abilities of Dispersed Particle Gels. Gels. 2023; 9(5):402. https://doi.org/10.3390/gels9050402
Chicago/Turabian StyleWang, Zizhao, Zhixuan Zhu, Tianyu Jiang, Jinming Liu, Yunbo Dong, Yining Wu, Mingwei Zhao, Caili Dai, and Lin Li. 2023. "Probing the Effect of Young’s Modulus on the Reservoir Regulation Abilities of Dispersed Particle Gels" Gels 9, no. 5: 402. https://doi.org/10.3390/gels9050402
APA StyleWang, Z., Zhu, Z., Jiang, T., Liu, J., Dong, Y., Wu, Y., Zhao, M., Dai, C., & Li, L. (2023). Probing the Effect of Young’s Modulus on the Reservoir Regulation Abilities of Dispersed Particle Gels. Gels, 9(5), 402. https://doi.org/10.3390/gels9050402