Statistically Optimized Tacrolimus and Thymoquinone Co-Loaded Nanostructured Lipid Carriers Gel for Improved Topical Treatment of Psoriasis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Estimation of TAC and THQ via RP-HPLC
2.2. Excipients Screening
2.2.1. Selection of Liquid Lipid (Oil), Solid Lipid, and Binary Mixture
2.2.2. Selection of Surfactant and Co-Surfactant
2.3. Formulation and Optimization of TAC-THQ-Loaded NLCs by BBD
2.3.1. Effect on Particle Size (Y1)
2.3.2. Effect on PDI (Y2)
2.3.3. Effect on Entrapment Efficiencies (Y3 and Y4)
2.3.4. Selection of Optimized Formulation Composition
2.4. Characterization of Optimized TAC-THQ-NLCs
2.4.1. Particle Characterization
2.4.2. %EE and %DL
2.4.3. Morphological Characterization
2.4.4. FT-IR Analysis
2.4.5. DSC Analysis
2.4.6. PXRD Analysis
2.5. Formulation and Characterization of TAC-THQ-NG and TAC-THQ-SG
2.5.1. Physical Appearance, pH, and Drug Content
2.5.2. Viscosity and Spreadability
2.5.3. Texture Analysis
2.6. In Vitro Drug Release and Release Kinetics
2.7. MTT Assay
2.8. Antioxidant Activity
2.9. Assessment of Permeation Depth of the Formulation in the Skin
2.10. Storage Stability
3. Conclusions
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Estimation of TAC and THQ via RP-HPLC
4.3. Excipients Screening
4.3.1. Screening of Liquid Lipid, Solid Lipid, and Binary Mixture
4.3.2. Screening of Surfactants and Co-Surfactants
4.4. Formulation of TAC-THQ-NLCs
4.5. Experimental Design for Optimization of TAC-THQ-NLCs
4.6. Characterization of TAC-THQ-NLCs
4.6.1. Particle Characterization
4.6.2. Entrapment Efficiency (%EE) and Drug Loading (%DL)
4.6.3. Morphological Characterization
4.6.4. Fourier-Transform Infrared (FT-IR) Spectroscopy
4.6.5. Differential Scanning Calorimetry (DSC)
4.6.6. Powder X-ray Diffraction (PXRD)
4.7. Preparation of TAC-THQ-NLC-Gel and TAC-THQ-Suspension-Gel
4.8. Characterization of TAC-THQ-NG and TAC-THQ-SG
4.8.1. Physical Appearance, pH, and Drug Content
4.8.2. Viscosity and Spreadability
4.8.3. Texture Analysis
4.9. In Vitro Drug Release and Release Kinetics
4.10. MTT Assay
4.11. Antioxidant Activity
4.12. Assessment of Permeation Depth of the Formulation in the Skin
4.13. Storage Stability
4.14. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vičić, M.; Kaštelan, M.; Brajac, I.; Sotošek, V.; Massari, L.P. Current concepts of psoriasis immunopathogenesis. Int. J. Mol. Sci. 2021, 22, 11574. [Google Scholar] [CrossRef] [PubMed]
- Garg, T.; Rath, G.; Goyal, A.K. Nanotechnological approaches for the effective management of psoriasis. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, J.E.; Chan, T.C.; Krueger, J.G. Psoriasis pathogenesis and the development of novel targeted immune therapies. J. Allergy Clin. Immunol. 2017, 140, 645–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, M.; Barreiros, L.; Segundo, M.A.; Torres, T.; Selores, M.; Lima, S.A.C.; Reis, S. Topical co-delivery of methotrexate and etanercept using lipid nanoparticles: A targeted approach for psoriasis management. Colloids Surf. B Biointerfaces 2017, 159, 23–29. [Google Scholar] [CrossRef]
- Laws, P.M.; Young, H.S. Topical treatment of psoriasis. Expert Opin. Pharmacother. 2010, 11, 1999–2009. [Google Scholar] [CrossRef]
- Katare, O.; Raza, K.; Singh, B.; Dogra, S. Novel drug delivery systems in topical treatment of psoriasis: Rigors and vigors. Indian J. Dermatol. Venereol. Leprol. 2010, 76, 612–621. [Google Scholar] [CrossRef]
- Wan, T.; Pan, J.; Long, Y.; Yu, K.; Wang, Y.; Pan, W.; Ruan, W.; Qin, M.; Wu, C.; Xu, Y. Dual roles of TPGS based microemulsion for tacrolimus: Enhancing the percutaneous delivery and anti-psoriatic efficacy. Int. J. Pharm. 2017, 528, 511–523. [Google Scholar] [CrossRef]
- Jain, S.; Addan, R.; Kushwah, V.; Harde, H.; Mahajan, R.R. Comparative assessment of efficacy and safety potential of multifarious lipid based Tacrolimus loaded nanoformulations. Int. J. Pharm. 2019, 562, 96–104. [Google Scholar]
- Woo, C.C.; Kumar, A.P.; Sethi, G.; Tan, K.H.B. Thymoquinone: Potential cure for inflammatory disorders and cancer. Biochem. Pharmacol. 2012, 83, 443–451. [Google Scholar] [CrossRef]
- Dwarampudi, L.P.; Palaniswamy, D.; Nithyanantham, M.; Raghu, P. Antipsoriatic activity and cytotoxicity of ethanolic extract of Nigella sativa seeds. Pharmacogn. Mag. 2012, 8, 268–272. [Google Scholar]
- Ahmed, J.H.; Ibraheem, A.Y.; Al-Hamdi, K.I. Evaluation of efficacy, safety and antioxidant effect of Nigella sativa in patients with psoriasis: A randomized clinical trial. J. Clin. Exp. Investig. 2014, 5, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Negi, P.; Sharma, I.; Hemrajani, C.; Rathore, C.; Bisht, A.; Raza, K.; Katare, O. Thymoquinone-loaded lipid vesicles: A promising nanomedicine for psoriasis. BMC Complement. Altern. Med. 2019, 19, 334. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.K.; Huang, Z.R.; Zhuo, R.Z.; Fang, J.Y. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int. J. Nanomed. 2010, 5, 117–128. [Google Scholar]
- Nakamura, M.; Koo, J. Safety considerations with combination therapies for psoriasis. Expert Opin. Drug Saf. 2020, 19, 489–498. [Google Scholar] [CrossRef]
- Hoffman, M.B.; Hill, D.; Feldman, S.R. Current challenges and emerging drug delivery strategies for the treatment of psoriasis. Expert Opin. Drug Deliv. 2016, 13, 1461–1473. [Google Scholar] [CrossRef] [PubMed]
- Koo, K.; Jeon, C.; Bhutani, T. Beyond monotherapy: A systematic review on creative strategies in topical therapy of psoriasis. J. Dermatol. Treat. 2017, 28, 702–708. [Google Scholar] [CrossRef]
- Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int. J. Pharm. 2020, 587, 119705. [Google Scholar] [CrossRef] [PubMed]
- Avadhani, K.S.; Manikkath, J.; Tiwari, M.; Chandrasekhar, M.; Godavarthi, A.; Vidya, S.M.; Hariharapura, R.C.; Kalthur, G.; Udupa, N.; Mutalik, S. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv. 2017, 24, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Bansal, R.; Gupta, S.; Jindal, N.; Jindal, A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol. Online J. 2013, 4, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Teeranachaideekul, V.; Müller, R.H.; Junyaprasert, V.B. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)-Effects of formulation parameters on physicochemical stability. Int. J. Pharm. 2007, 340, 198–206. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54, S131–S155. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Rizwanullah, M.; Amin, S.; Warsi, M.H.; Ahmad, M.Z.; Barkat, M. Nanostructured lipid carriers (NLCs): Nose-to-brain delivery and theranostic application. Curr. Drug Metab. 2020, 21, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Aqil, M.; Ahad, A.; Najmi, A.K.; Sultana, Y.; Ali, A. Application of Box–Behnken design for preparation of glibenclamide loaded lipid based nanoparticles: Optimization, in vitro skin permeation, drug release and in vivo pharmacokinetic study. J. Mol. Liq. 2016, 219, 897–908. [Google Scholar] [CrossRef]
- Arora, R.; Katiyar, S.S.; Kushwah, V.; Jain, S. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: A comparative study. Expert Opin. Drug Deliv. 2017, 14, 165–177. [Google Scholar] [CrossRef]
- Iqubal, M.K.; Iqubal, A.; Imtiyaz, K.; Rizvi, M.M.; Gupta, M.M.; Ali, J.; Baboota, S. Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: Delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis. Eur. J. Pharm. Biopharm. 2021, 16, 223–239. [Google Scholar] [CrossRef]
- Iqbal, B.; Ali, J.; Baboota, S. Silymarin loaded nanostructured lipid carrier: From design and dermatokinetic study to mechanistic analysis of epidermal drug deposition enhancement. J. Mol. Liq. 2018, 255, 513–529. [Google Scholar] [CrossRef]
- Subedi, R.K.; Kang, K.W.; Choi, H.K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur. J. Pharm. Sci. 2009, 37, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Shtay, R.; Tan, C.P.; Schwarz, K. Development and characterization of solid lipid nanoparticles (SLNs) made of cocoa butter: A factorial design study. J. Food Eng. 2018, 231, 30–41. [Google Scholar] [CrossRef]
- Singh, A.; Neupane, Y.R.; Mangla, B.; Kohli, K. Nanostructured lipid carriers for oral bioavailability enhancement of exemestane: Formulation design, in vitro, ex vivo, and in vivo studies. J. Pharm Sci. 2019, 108, 3382–3395. [Google Scholar] [CrossRef]
- Alam, T.; Khan, S.; Gaba, B.; Haider, M.F.; Baboota, S.; Ali, J. Adaptation of quality by design-based development of isradipine nanostructured–lipid carrier and its evaluation for in vitro gut permeation and in vivo solubilization fate. J. Pharm Sci. 2018, 107, 2914–2926. [Google Scholar] [CrossRef]
- Kawish, S.M.; Hasan, N.; Beg, S.; Qadir, A.; Jain, G.K.; Aqil, M.; Ahmad, F.J. Docetaxel-loaded borage seed oil nanoemulsion with improved antitumor activity for solid tumor treatment: Formulation development, in vitro, in silico and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2022, 75, 103693. [Google Scholar] [CrossRef]
- Alhalmi, A.; Amin, S.; Khan, Z.; Beg, S.; Al Kamaly, O.; Saleh, A.; Kohli, K. Nanostructured Lipid Carrier-Based Codelivery of Raloxifene and Naringin: Formulation, Optimization, In Vitro, Ex Vivo, In Vivo Assessment, and Acute Toxicity Studies. Pharmaceutics 2022, 14, 1771. [Google Scholar] [CrossRef] [PubMed]
- Pivetta, T.P.; Simões, S.; Araújo, M.M.; Carvalho, T.; Arruda, C.; Marcato, P.D. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf. B Biointerfaces 2018, 164, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Jenning, V.; Thünemann, A.F.; Gohla, S.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm. 2000, 199, 167–177. [Google Scholar] [CrossRef]
- Yamashita, K.; Nakate, T.; Okimoto, K.; Ohike, A.; Tokunaga, Y.; Ibuki, R.; Higaki, K.; Kimura, T. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int. J. Pharm. 2003, 267, 79–91. [Google Scholar] [CrossRef]
- Surekha, R.; Sumathi, T. An efficient encapsulation of thymoquinone using solid lipid nanoparticle for brain targeted drug delivery: Physicochemical characterization, pharmacokinetics and bio-distribution studies. Int. J. Pharm. Clin. Res. 2016, 8, 1616–1624. [Google Scholar]
- Ng, W.S.; Lee, C.S.; Cheng, S.F.; Chuah, C.H.; Wong, S.F. Biocompatible polyurethane scaffolds prepared from glycerol monostearate-derived polyester polyol. J. Polym. Environ. 2018, 26, 2881–2900. [Google Scholar] [CrossRef]
- Somagoni, J.; Boakye, C.H.; Godugu, C.; Patel, A.R.; Mendonca Faria, H.A.; Zucolotto, V.; Singh, M. Nanomiemgel-a novel drug delivery system for topical application-in vitro and in vivo evaluation. PLoS ONE 2014, 9, e115952. [Google Scholar] [CrossRef] [Green Version]
- Khatoon, K.; Ali, A.; Ahmad, F.J.; Hafeez, Z.; Rizvi, M.; Akhter, S.; Beg, S. Novel nanoemulsion gel containing triple natural bio-actives combination of curcumin, thymoquinone, and resveratrol improves psoriasis therapy: In vitro and in vivo studies. Drug Deliv. Transl. Res. 2021, 11, 1245–1260. [Google Scholar] [CrossRef] [PubMed]
- Zafar, S.; Akhter, S.; Ahmad, I.; Hafeez, Z.; Rizvi, M.M.; Jain, G.K.; Ahmad, F.J. Improved chemotherapeutic efficacy against resistant human breast cancer cells with co-delivery of Docetaxel and Thymoquinone by Chitosan grafted lipid nanocapsules: Formulation optimization, in vitro and in vivo studies. Colloids Surf. B Biointerfaces 2020, 186, 110603. [Google Scholar] [CrossRef]
- Sonawane, R.; Harde, H.; Katariya, M.; Agrawal, S.; Jain, S. Solid lipid nanoparticles-loaded topical gel containing combination drugs: An approach to offset psoriasis. Opin. Drug Deliv. 2014, 11, 1833–1847. [Google Scholar] [CrossRef]
- Lin, X.; Huang, T. Oxidative stress in psoriasis and potential therapeutic use of antioxidants. Free. Radic. Res. 2016, 50, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Rehman, M.U.; Khan, H.M.; Rasool, F.; Saeed, T.; Murtaz, G. Penetration enhancing effect of polysorbate 20 and 80 on the in vitro percutaneous absorption of lascorbic acid. Trop. J. Pharm. Res. 2011, 10, 281–288. [Google Scholar] [CrossRef]
- Rizwanullah, M.; Amin, S.; Ahmad, J. Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers. J. DrugTarget. 2017, 25, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Ahmad, I.; Akhter, S.; Jain, G.K.; Iqbal, Z.; Talegaonkar, S.; Ahmad, F.J. Nanocarrier based formulation of Thymoquinone improves oral delivery: Stability assessment, in vitro and in vivo studies. Colloids Surf. B Biointerfaces 2013, 102, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Kawish, S.M.; Ahmed, S.; Gull, A.; Aslam, M.; Pandit, J.; Aqil, M.; Sultana, Y. Development of nabumetone loaded lipid nano-scaffold for the effective oral delivery; optimization, characterization, drug release and pharmacodynamic study. J. Mol. Liq. 2017, 231, 514–522. [Google Scholar] [CrossRef]
- Alam, M.; Ahmed, S.; Nikita; Moon, G.; Aqil, M.; Sultana, Y. Chemical engineering of a lipid nano-scaffold for the solubility enhancement of an antihyperlipidaemic drug, simvastatin; preparation, optimization, physicochemical characterization and pharmacodynamic study. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1908–1919. [Google Scholar]
- Rizwanullah, M.; Ahmad, J.; Amin, S. Nanostructured lipid carriers: A novel platform for chemotherapeutics. Curr. Drug Deliv. 2016, 13, 4–26. [Google Scholar] [CrossRef]
- Negi, L.M.; Jaggi, M.; Joshi, V.; Ronodip, K.; Talegaonkar, S. Hyaluronic acid decorated lipid nanocarrier for MDR modulation and CD-44 targeting in colon adenocarcinoma. Int. J. Biol. Macromol. 2015, 72, 569–574. [Google Scholar] [CrossRef]
- Negi, L.M.; Talegaonkar, S.; Jaggi, M.; Verma, A.K.; Verma, R.; Dobhal, S.; Kumar, V. Surface engineered nanostructured lipid carriers for targeting MDR tumor: Part II. In vivo biodistribution, pharmacodynamic and hematological toxicity studies. Colloids Surf. B Biointerfaces 2014, 123, 610–615. [Google Scholar] [CrossRef]
- Rizwanullah, M.; Perwez, A.; Mir, S.R.; Rizvi, M.M.; Amin, S. Exemestane encapsulated polymer-lipid hybrid nanoparticles for improved efficacy against breast cancer: Optimization, in vitro characterization and cell culture studies. Nanotechnology 2021, 32, 415101. [Google Scholar] [CrossRef] [PubMed]
- Sartaj, A.; Annu; Alam, M.; Biswas, L.; Yar, M.S.; Mir, S.R.; Verma, A.K.; Baboota, S.; Ali, J. Combinatorial delivery of Ribociclib and green tea extract mediated nanostructured lipid carrier for oral delivery for the treatment of breast cancer synchronising in silico, in vitro, and in vivo studies. J. Drug Target. 2022, 30, 1113–1134. [Google Scholar] [CrossRef]
- Soni, K.; Rizwanullah, M.; Kohli, K. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: In vitro, ex vivo and in vivo assessments. Artif. Cells Nanomed. Biotechnol. 2018, 46, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.A.; Date, A.A.; Joshi, M.D.; Patravale, V.B. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery. Int. J. Pharm. 2007, 345, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Aziz, K.; Ahmad, N.; Kohli, K. Enhanced anti-arthritic Potential of Tacrolimus by Transdermal Nanocarrier System. J. Nanosci. Nanotechnol. 2017, 17, 4573–4583. [Google Scholar] [CrossRef]
- Harde, H.; Agrawal, A.K.; Katariy, M.; Kale, D.; Jain, S. Development of a topical adapalene-solid lipid nanoparticle loaded gel with enhanced efficacy and improved skin tolerability. RSC Adv. 2015, 5, 43917–43929. [Google Scholar] [CrossRef]
- Ahmed, S.; Mahmood, S.; Ansari, M.D.; Gull, A.; Sharma, N.; Sultana, Y. Nanostructured lipid carrier to overcome stratum corneum barrier for the delivery of agomelatine in rat brain; formula optimization, characterization and brain distribution study. Int. J. Pharm. 2021, 607, 121006. [Google Scholar] [CrossRef]
- Agrawal, Y.; Petkar, K.C.; Sawant, K.K. Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis. Int. J. Pharm. 2010, 40, 93–102. [Google Scholar] [CrossRef]
- Jain, A.K.; Thanki, K.; Jain, S. Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: Implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol. Pharm. 2013, 10, 3459–3474. [Google Scholar] [CrossRef]
- Qadir, A.; Aqil, M.; Ali, A.; Warsi, M.H.; Mujeeb, M.; Ahmad, F.J.; Ahmad, S.; Beg, S. Nanostructured lipidic carriers for dual drug delivery in the management of psoriasis: Systematic optimization, dermatokinetic and preclinical evaluation. J. Drug Deliv. Sci. Technol. 2020, 5, 101775. [Google Scholar] [CrossRef]
- Zakir, F.; Ahmad, A.; Farooq, U.; Mirza, M.A.; Tripathi, A.; Singh, D.; Shakeel, F.; Mohapatra, S.; Ahmad, F.J.; Kohli, K. Design and development of a commercially viable in situ nanoemulgel for the treatment of postmenopausal osteoporosis. Nanomedicine 2020, 15, 1167–1187. [Google Scholar] [CrossRef] [PubMed]
Solid Liquid | Liquid Lipid | Ratio (S:L) | Inference |
---|---|---|---|
GMS | Capryol 90 | 1:9 | Phase separation |
GMS | Capryol 90 | 2:8 | Phase separation |
GMS | Capryol 90 | 3:7 | Phase separation |
GMS | Capryol 90 | 4:6 | Phase separation |
GMS | Capryol 90 | 5:5 | Phase separation |
GMS | Capryol 90 | 6:4 | No phase separation |
GMS | Capryol 90 | 7:3 | No phase separation |
GMS | Capryol 90 | 8:2 | No phase separation |
GMS | Capryol 90 | 9:1 | No phase separation |
Surfactants | % Transmittance ± SD |
---|---|
Tween 80 | 91.03 ± 2.82 |
Span 80 | 77.96 ± 2.59 |
PEG 400 | 86.03 ± 2.42 |
Lauroglycol 90 | 81.06 ± 2.95 |
Plurol Diisostearique | 82.93 ± 2.22 |
Labrasol | 89.30 ± 3.22 |
Span 20 | 86.77 ± 2.39 |
Runs | Independent Variables | Dependent Variables | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Y1 | Y2 | Y3 | Y4 | |||||
Actual | Predicted | Actual | Predicted | Actual | Predicted | Actual | Predicted | ||||
F1 | 4 | 7 | 2 | 164.6 | 164.1 | 0.129 | 0.127 | 70.38 | 70.02 | 77.16 | 76.95 |
F2 | 3 | 6 | 4 | 90.5 | 91.01 | 0.175 | 0.175 | 58.73 | 58.35 | 66.16 | 66.1 |
F3 | 4 | 5 | 4 | 145.1 | 145.6 | 0.227 | 0.228 | 65.21 | 65.57 | 73.21 | 73.42 |
F4 | 5 | 6 | 4 | 175.2 | 175.1 | 0.301 | 0.297 | 75.66 | 75.56 | 82.13 | 82.27 |
F5 | 5 | 7 | 3 | 185.9 | 186.9 | 0.212 | 0.214 | 80.98 | 80.96 | 86.46 | 86.61 |
F6 | 5 | 6 | 2 | 202.9 | 202.4 | 0.217 | 0.216 | 82.17 | 82.55 | 87.39 | 87.45 |
F7 | 3 | 5 | 3 | 116.5 | 115.5 | 0.146 | 0.144 | 64.19 | 64.21 | 72.12 | 71.97 |
F8 | 4 | 6 | 3 | 129.8 | 127.7 | 0.151 | 0.154 | 70.98 | 71.06 | 77.02 | 76.75 |
F9 | 4 | 6 | 3 | 127.6 | 127.7 | 0.155 | 0.154 | 71.54 | 71.06 | 76.36 | 76.75 |
F10 | 4 | 7 | 4 | 137.6 | 136.7 | 0.195 | 0.197 | 63.94 | 64.07 | 71.82 | 71.53 |
F11 | 4 | 5 | 2 | 175.7 | 176.6 | 0.171 | 0.169 | 71.66 | 71.53 | 77.96 | 78.25 |
F12 | 3 | 6 | 2 | 122.1 | 122.2 | 0.123 | 0.127 | 63.16 | 63.26 | 71.32 | 71.18 |
F13 | 4 | 6 | 3 | 125.7 | 127.7 | 0.157 | 0.154 | 70.67 | 71.06 | 76.88 | 76.75 |
F14 | 5 | 5 | 3 | 204.1 | 203.7 | 0.261 | 0.263 | 83.95 | 83.69 | 89.17 | 88.82 |
F15 | 3 | 7 | 3 | 110.4 | 110.8 | 0.123 | 0.121 | 63.68 | 63.94 | 70.66 | 71.01 |
Model | R2 | R2 Adjusted | R2 Predicted | SD | Adequate Precision | Remark |
---|---|---|---|---|---|---|
Response (Y1): PS | ||||||
Linear | 0.9015 | 0.8746 | 0.8583 | 12.38 | 83.7893 | - |
2FI | 0.9040 | 0.8321 | 0.7804 | 14.33 | - | |
Quadratic | 0.9992 | 0.9978 | 0.9941 | 1.65 | Suggested | |
Cubic | 0.995 | 0.9966 | - | 2.05 | Aliased | |
Response (Y2): PDI | ||||||
Linear | 0.8744 | 0.8402 | 0.7950 | 0.0209 | 55.5678 | - |
2FI | 0.8862 | 0.8008 | 0.6626 | 0.0233 | - | |
Quadratic | 0.9980 | 0.9945 | 0.9751 | 0.0039 | Suggested | |
Cubic | 0.9995 | 0.9966 | - | 0.0031 | Aliased | |
Response (Y3): EE-TAC | ||||||
Linear | 0.9202 | 0.8984 | 0.8309 | 2.42 | 65.3883 | - |
2FI | 0.9234 | 0.8660 | 0.5998 | 2.78 | - | |
Quadratic | 0.9986 | 0.9961 | 0.9842 | 0.4752 | Suggested | |
Cubic | 0.9995 | 0.9966 | - | 0.4409 | Aliased | |
Response (Y4): EE-THQ | ||||||
Linear | 0.9296 | 0.9105 | 0.8521 | 2.00 | 68.4019 | - |
2FI | 0.9304 | 0.8782 | 0.6328 | 2.34 | - | |
Quadratic | 0.9987 | 0.9963 | 0.9842 | 0.4068 | Suggested | |
Cubic | 0.9996 | 0.9973 | - | 0.3478 | Aliased |
Independent Variables | Optimized Level | Outcomes | Predicted | Experimental |
---|---|---|---|---|
Lipid-mixture (%) | 4.36 | PS (nm) | 147.98 | 144.95 ± 2.80 |
Surfactants (%) | 6.26 | PDI | 0.164 | 0.160 ± 0.021 |
Sonication time (min) | 2.73 | EE-TAC (%) EE-THQ (%) | 75.03 80.35 | 73.44 ± 2.54 78.62 ± 2.75 |
TAC-THQ-NG | Release Model | Conc-Time Equation | R2 | Release Exponent (n) |
---|---|---|---|---|
TAC | Zero order | Dt = D0 + k0t | 0.7843 | |
1st order | ln Dt = lnD0 + k1t | 0.8741 | ||
Higuchi matrix | Dt = D0 + kt1/2 | 0.9388 | ||
Korsmeyer–Peppas | At/D∞ = ktn | 0.9892 | 0.2511 | |
THQ | Zero order | Dt = D0 + k0t | 0.8095 | |
1st order | ln Dt = lnD0 + k1t | 0.9258 | ||
Higuchi matrix | Dt = D0 + kt1/2 | 0.955 | ||
Korsmeyer–Peppas | At/D∞ = ktn | 0.9822 | 0.2409 |
Storage Condition | Time (Months) | TAC-THQ-NLCs | TAC-THQ-NG | ||||||
---|---|---|---|---|---|---|---|---|---|
PS (nm) | PDI | %EE-TAC | %EE-THQ | Drug Content (%-TAC) | Drug Content (%-THQ) | pH | Spreadability | ||
Initial | 0 | 144.95 ± 2.80 | 0.160 ± 0.021 | 73.44 ± 2.54 | 78.62 ± 2.75 | 97.99 ± 1.79 | 98.51 ± 1.33 | 6.72 ± 0.29 | 8.10 ± 0.46 |
5 ± 3 °C | 3 | 147.22 ± 2.81 | 0.172 ± 0.020 | 71.42 ± 2.49 | 76.63 ± 2.31 | 96.65 ± 1.85 | 97.11 ± 1.57 | 6.54 ± 0.32 | 7.07 ± 0.40 |
25 ± 2 °C | 3 | 152.03 ± 3.16 | 0.183 ± 0.018 | 69.68 ± 2.70 | 74.15 ± 2.86 | 95.59 ± 1.78 | 95.02 ± 1.67 | 6.42 ± 0.28 | 7.83 ± 0.42 |
Factor | Actual Levels (Coded) | ||
---|---|---|---|
Independent Factors | Low (−1) | Medium (0) | High (+1) |
X1 = Lipid mixture (%w/v) | 3 | 4 | 5 |
X2 = Surfactant mixture (%w/v) | 5 | 6 | 7 |
X3 = Sonication time (minute) | 2 | 3 | 4 |
Dependent factors | Desired outcome | ||
Y1 = Particle size (nm) | Minimize | ||
Y2 = Polydispersity index (PDI) | Minimize | ||
Y3 = % Entrapment efficiency-TAC | Maximize | ||
Y4 = % Entrapment efficiency-THQ | Maximize |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.; Rizwanullah, M.; Mir, S.R.; Amin, S. Statistically Optimized Tacrolimus and Thymoquinone Co-Loaded Nanostructured Lipid Carriers Gel for Improved Topical Treatment of Psoriasis. Gels 2023, 9, 515. https://doi.org/10.3390/gels9070515
Alam M, Rizwanullah M, Mir SR, Amin S. Statistically Optimized Tacrolimus and Thymoquinone Co-Loaded Nanostructured Lipid Carriers Gel for Improved Topical Treatment of Psoriasis. Gels. 2023; 9(7):515. https://doi.org/10.3390/gels9070515
Chicago/Turabian StyleAlam, Meraj, Md. Rizwanullah, Showkat R. Mir, and Saima Amin. 2023. "Statistically Optimized Tacrolimus and Thymoquinone Co-Loaded Nanostructured Lipid Carriers Gel for Improved Topical Treatment of Psoriasis" Gels 9, no. 7: 515. https://doi.org/10.3390/gels9070515
APA StyleAlam, M., Rizwanullah, M., Mir, S. R., & Amin, S. (2023). Statistically Optimized Tacrolimus and Thymoquinone Co-Loaded Nanostructured Lipid Carriers Gel for Improved Topical Treatment of Psoriasis. Gels, 9(7), 515. https://doi.org/10.3390/gels9070515