Intra-Cardiac Kinetic Energy and Ventricular Flow Analysis in Bicuspid Aortic Valve: Impact on Left Ventricular Function, Dilation Severity, and Surgical Referral
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Cardiac Magnetic Resonance Acquisition
2.3. Cardiac Magnetic Resonance Imaging and 4D-Flow Analysis
3. Results
3.1. Cohort Characteristics
3.2. Ventricular Flow Component Quantification
3.3. Patients with BAV Undergoing Surgery
3.4. Ventricular Flow Component Associations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isselbacher, E.M.; Preventza, O.; Hamilton Black, J.; Augoustides, J.G.; Beck, A.W.; Bolen, M.A.; Braverman, A.C.; Bray, B.E.; Brown-Zimmerman, M.M.; Chen, E.P.; et al. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2022, 146, E334–E482. [Google Scholar] [CrossRef]
- Fatehi Hassanabad, A.; King, M.A.; Di Martino, E.; Fedak, P.W.M.; Garcia, J. Clinical implications of the biomechanics of bicuspid aortic valve and bicuspid aortopathy. Front. Cardiovasc. Med. 2022, 9, 922353. [Google Scholar] [CrossRef]
- Verma, S.; Siu, S.C. Aortic dilatation in patients with bicuspid aortic valve. N. Engl. J. Med. 2014, 370, 1920–1929. [Google Scholar] [CrossRef]
- Borger, M.A.; Fedak, P.W.M.M.; Stephens, E.H.; Gleason, T.G.; Girdauskas, E.; Ikonomidis, J.S.; Khoynezhad, A.; Siu, S.C.; Verma, S.; Hope, M.D.; et al. The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve–related aortopathy: Full online-only version. J. Thorac. Cardiovasc. Surg. 2018, 156, e41–e74. [Google Scholar] [CrossRef]
- Aliabadi, S.; Sojoudi, A.; Bandali, M.F.; Bristow, M.S.; Lydell, C.; Fedak, P.W.M.; White, J.A.; Garcia, J. Intra-cardiac pressure drop and flow distribution of bicuspid aortic valve disease in preserved ejection fraction. Front. Cardiovasc. Med. 2022, 9, 903277. [Google Scholar] [CrossRef]
- Geeraert, P.; Jamalidinan, F.; Burns, F.; Jarvis, K.; Bristow, M.S.; Lydell, C.; Hidalgo Tobon, S.S.; de Celis Alonso, B.; Fedak, P.W.M.; White, J.A.; et al. Hemodynamic Assessment in Bicuspid Aortic Valve Disease and Aortic Dilation: New Insights From Voxel-By-Voxel Analysis of Reverse Flow, Stasis, and Energetics. Front. Bioeng. Biotechnol. 2022, 9, 725113. [Google Scholar] [CrossRef]
- Qin, J.J.; Indja, B.; Gholipour, A.; Gök, M.; Grieve, S.M. Evaluation of Left Ventricular Function Using Four-Dimensional Flow Cardiovascular Magnetic Resonance: A Systematic Review. J. Cardiovasc. Dev. Dis. 2022, 9, 304. [Google Scholar] [CrossRef] [PubMed]
- Gorecka, M.; Bissell, M.M.; Higgins, D.M.; Garg, P.; Plein, S.; Greenwood, J.P. Rationale and clinical applications of 4D flow cardiovascular magnetic resonance in assessment of valvular heart disease: A comprehensive review. J. Cardiovasc. Magn. Reson. 2022, 24, 49. [Google Scholar] [CrossRef]
- Ashkir, Z.; Myerson, S.; Neubauer, S.; Carlhäll, C.-J.; Ebbers, T.; Raman, B. Four-dimensional flow cardiac magnetic resonance assessment of left ventricular diastolic function. Front. Cardiovasc. Med. 2022, 9, 866131. [Google Scholar] [CrossRef]
- Hassanabad, A.F.; Garcia, J.; Verma, S.; White, J.A.J.A.; Fedak, P.W.M. Utilizing wall shear stress as a clinical biomarker for bicuspid valve-associated aortopathy. Curr. Opin. Cardiol. 2019, 34, 124–131. [Google Scholar] [CrossRef]
- Garg, P.; Crandon, S.; Swoboda, P.P.; Fent, G.J.; Foley, J.R.J.; Chew, P.G.; Brown, L.A.E.; Vijayan, S.; Hassell, M.E.C.J.; Nijveldt, R.; et al. Left ventricular blood flow kinetic energy after myocardial infarction—Insights from 4D flow cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2018, 20, 61. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.; Lee, J.; Lantz, J.; Ebbers, T.; Shadden, S.C. Cardiac Kinetic Energy and Viscous Dissipation Rate From Radial Flow Data. Front. Physiol. 2021, 12, 725104. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Anagnostopoulos, P.V.; Roldan-Alzate, A.; Srinivasan, S.; Schiebler, M.L.; Wieben, O.; François, C.J. Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot. J. Thorac. Cardiovasc. Surg. 2015, 149, 1339–1347. [Google Scholar] [CrossRef]
- Demirkiran, A.; van Ooij, P.; Westenberg, J.J.M.; Hofman, M.B.M.; van Assen, H.C.; Schoonmade, L.J.; Asim, U.; Blanken, C.P.S.; Nederveen, A.J.; van Rossum, A.C.; et al. Clinical intra-cardiac 4D flow CMR: Acquisition, analysis, and clinical applications. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Chabiniok, R.; Tibby, S.M.; Pushparajah, K.; Sammut, E.; Celermajer, D.; Giese, D.; Hussain, T.; Greil, G.F.; Schaeffter, T.; et al. Exploring kinetic energy as a new marker of cardiac function in the single ventricle circulation. J. Appl. Physiol. 2018, 125, 889–900. [Google Scholar] [CrossRef]
- Demirkiran, A.; van der Geest, R.J.; Hopman, L.H.G.A.; Robbers, L.F.H.J.; Handoko, M.L.; Nijveldt, R.; Greenwood, J.P.; Plein, S.; Garg, P. Association of left ventricular flow energetics with remodeling after myocardial infarction: New hemodynamic insights for left ventricular remodeling. Int. J. Cardiol. 2022, 367, 105–114. [Google Scholar] [CrossRef]
- Demirkiran, A.; Hassell, M.E.C.J.; Garg, P.; Elbaz, M.S.M.; Delewi, R.; Greenwood, J.P.; Piek, J.J.; Plein, S.; van der Geest, R.J.; Nijveldt, R. Left ventricular four-dimensional blood flow distribution, energetics, and vorticity in chronic myocardial infarction patients with/without left ventricular thrombus. Eur. J. Radiol. 2022, 150, 110233. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Assadi, H.; Alabed, S.; Cameron, D.; Vassiliou, V.S.; Westenberg, J.J.M.; van der Geest, R.; Zhong, L.; Dastidar, A.; Swift, A.J.; et al. Left Ventricular Blood Flow Kinetic Energy Assessment by 4D Flow Cardiovascular Magnetic Resonance: A Systematic Review of the Clinical Relevance. J. Cardiovasc. Dev. Dis. 2020, 7, 37. [Google Scholar] [CrossRef]
- Kim, H.; Sheitt, H.; Wilton, S.B.; White, J.A.; Garcia, J. Left Ventricular Flow Distribution as a Novel Flow Biomarker in Atrial Fibrillation. Front. Bioeng. Biotechnol. 2021, 9, 725121. [Google Scholar] [CrossRef]
- Callaghan, F.M.; Burkhardt, B.; Valsangiacomo Buechel, E.R.; Kellenberger, C.J.; Geiger, J. Assessment of ventricular flow dynamics by 4D-flow MRI in patients following surgical repair of d-transposition of the great arteries. Eur. Radiol. 2021, 31, 7231–7241. [Google Scholar] [CrossRef]
- Kramer, C.M.; Barkhausen, J.; Bucciarelli-Ducci, C.; Flamm, S.D.; Kim, R.J.; Nagel, E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J. Cardiovasc. Magn. Reson. 2020, 22, 17. [Google Scholar] [CrossRef]
- Nightingale, M.; Scott, M.B.; Sigaeva, T.; Guzzardi, D.; Garcia, J.; Malaisrie, S.C.; McCarthy, P.; Markl, M.; Fedak, P.W.M.; Di Martino, E.S.; et al. Magnetic resonance imaging-based hemodynamic wall shear stress alters aortic wall tissue biomechanics in bicuspid aortic valve patients. J. Thorac. Cardiovasc. Surg. 2023, 168, 465–476.e5. [Google Scholar] [CrossRef]
- Geeraert, P.; Jamalidinan, F.; Fatehi Hassanabad, A.; Sojoudi, A.; Bristow, M.; Lydell, C.; Fedak, P.W.M.; White, J.A.; Garcia, J. Bicuspid aortic valve disease is associated with abnormal wall shear stress, viscous energy loss, and pressure drop within the ascending thoracic aorta: A cross-sectional study. Medicine 2021, 100, e26518. [Google Scholar] [CrossRef]
- Garcia, J.; Beckie, K.; Hassanabad, A.F.; Sojoudi, A.; White, J.A. Aortic and mitral flow quantification using dynamic valve tracking and machine learning: Prospective study assessing static and dynamic plane repeatability, variability and agreement. JRSM Cardiovasc. Dis. 2021, 10, 204800402199990. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.; Carlhäll, C.J.; Dyverfeldt, P.; Engvall, J.; Bolger, A.F.; Ebbers, T. Semi-automatic quantification of 4D left ventricular blood flow. J. Cardiovasc. Magn. Reson. 2010, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.; Dyverfeldt, P.; Engvall, J.; Bolger, A.F.; Ebbers, T.; Carlhäll, C.J. Quantification of presystolic blood flow organization and energetics in the human left ventricle. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H2135–H2141. [Google Scholar] [CrossRef] [PubMed]
- Stoll, V.M.; Loudon, M.; Eriksson, J.; Bissell, M.M.; Dyverfeldt, P.; Ebbers, T.; Myerson, S.G.; Neubauer, S.; Carlhäll, C.-J.; Hess, A.T. Test-retest variability of left ventricular 4D flow cardiovascular magnetic resonance measurements in healthy subjects. J. Cardiovasc. Magn. Reson. 2018, 20, 15. [Google Scholar] [CrossRef] [PubMed]
- Eng, J. Sample size estimation: How many individuals should be studied? Radiology 2003, 227, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Prec, O.; Katz, L.N.; Sennett, L.; Rosenman, R.H.; Fishman, A.P.; Hwang, W. Determination of kinetic energy of the heart in man. Am. J. Physiol. Content 1949, 159, 483–491. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, R.-S.; Garg, P.; Chai, P.; Leng, S.; Bryant, J.A.; Teo, L.L.S.; Yeo, T.J.; Fortier, M.V.; Low, T.T.; et al. Age- and sex-specific reference values of biventricular flow components and kinetic energy by 4D flow cardiovascular magnetic resonance in healthy subjects. J. Cardiovasc. Magn. Reson. 2023, 25, 50. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, R.-S.; Garg, P.; Chai, P.; Leng, S.; Bryant, J.; Teo, L.L.S.; Ong, C.C.; van der Geest, R.J.; Allen, J.C.; et al. Impact of age, sex and ethnicity on intra-cardiac flow components and left ventricular kinetic energy derived from 4D flow CMR. Int. J. Cardiol. 2021, 336, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.; Bolger, A.F.; Ebbers, T.; Carlhäll, C.-J. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Crandon, S.; Westenberg, J.J.M.; Swoboda, P.P.; Fent, G.J.; Foley, J.R.J.; Chew, P.G.; Brown, L.A.E.; Saunderson, C.; Al-Mohammad, A.; Greenwood, J.P.; et al. Impact of Age and Diastolic Function on Novel, 4D flow CMR Biomarkers of Left Ventricular Blood Flow Kinetic Energy. Sci. Rep. 2018, 8, 14436. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, P.M.; Töger, J.; Heiberg, E.; Carlsson, M.; Arheden, H. Quantification of left and right atrial kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. J. Appl. Physiol. 2013, 114, 1472–1481. [Google Scholar] [CrossRef]
- Steding-Ehrenborg, K.; Arvidsson, P.M.; Töger, J.; Rydberg, M.; Heiberg, E.; Carlsson, M.; Arheden, H. Determinants of kinetic energy of blood flow in the four-chambered heart in athletes and sedentary controls. Am. J. Physiol. Circ. Physiol. 2016, 310, H113–H122. [Google Scholar] [CrossRef] [PubMed]
- van der Geest, R.J.; Garg, P. Advanced Analysis Techniques for Intra-cardiac Flow Evaluation from 4D Flow MRI. Curr. Radiol. Rep. 2016, 4, 38. [Google Scholar] [CrossRef]
- Binter, C.; Gotschy, A.; Sündermann, S.H.; Frank, M.; Tanner, F.C.; Lüscher, T.F.; Manka, R.; Kozerke, S. Turbulent Kinetic Energy Assessed by Multipoint 4-Dimensional Flow Magnetic Resonance Imaging Provides Additional Information Relative to Echocardiography for the Determination of Aortic Stenosis Severity. Circ. Cardiovasc. Imaging 2017, 10, e005486. [Google Scholar] [CrossRef]
- Elhawaz, A.; Archer, G.T.; Zafar, H.; Fidock, B.; Barker, N.; Jones, R.; Rothman, A.; Hose, R.; Al-Mohammad, A.; Briffa, N.; et al. Left ventricular blood flow kinetic energy is associated with the six-minute walk test and left ventricular remodelling post valvular intervention in aortic stenosis. Quant. Imaging Med. Surg. 2021, 11, 1470–1482. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, M.; Heiberg, E.; Toger, J.; Arheden, H. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H893–H900. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hu, L.; Leng, S.; Tan, R.-S.; Chai, P.; Bryant, J.A.; Teo, L.L.S.; Fortier, M.V.; Yeo, T.J.; Ouyang, R.Z.; et al. Ventricular flow analysis and its association with exertional capacity in repaired tetralogy of Fallot: 4D flow cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2022, 24, 4. [Google Scholar] [CrossRef] [PubMed]
- Stöhr, E.J.; González-Alonso, J.; Bezodis, I.N.; Shave, R. Left ventricular energetics: New insight into the plasticity of regional contributions at rest and during exercise. Am. J. Physiol. Circ. Physiol. 2014, 306, H225–H232. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J.A.; Roberts, G.S.; Corrado, P.A.; Beshish, A.G.; Haraldsdottir, K.; Barton, G.P.; Goss, K.N.; Eldridge, M.W.; Francois, C.J.; Wieben, O. Exercise-induced irregular right heart flow dynamics in adolescents and young adults born preterm. J. Cardiovasc. Magn. Reson. 2021, 23, 116. [Google Scholar] [CrossRef] [PubMed]
- Sel, K.; Osman, D.; Zare, F.; Masoumi Shahrbabak, S.; Brattain, L.; Hahn, J.; Inan, O.T.; Mukkamala, R.; Palmer, J.; Paydarfar, D.; et al. Building Digital Twins for Cardiovascular Health: From Principles to Clinical Impact. J. Am. Heart Assoc. 2024, 1, e0319813. [Google Scholar] [CrossRef]
- Bissell, M.M.; Raimondi, F.; Ait Ali, L.; Allen, B.D.; Barker, A.J.; Bolger, A.; Burris, N.; Carhäll, C.-J.; Collins, J.D.; Ebbers, T.; et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update. J. Cardiovasc. Magn. Reson. 2023, 25, 40. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Schrauben, E.M.; Garcia, J.; Uribe, S.; Grieve, S.M.; Elbaz, M.S.M.; Barker, A.J.; Geiger, J.; Nordmeyer, S.; Marsden, A.; et al. Intracardiac 4D Flow MRI in Congenital Heart Disease: Recommendations on Behalf of the ISMRM Flow & Motion Study Group. J. Magn. Reson. Imaging 2019, 50, 677–681. [Google Scholar] [CrossRef]
- Garcia, J.; Barker, A.J.A.J.; Markl, M. The Role of Imaging of Flow Patterns by 4D Flow MRI in Aortic Stenosis. JACC Cardiovasc. Imaging 2019, 12, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Vixège, F.; Berod, A.; Sun, Y.; Mendez, S.; Bernard, O.; Ducros, N.; Courand, P.-Y.; Nicoud, F.; Garcia, D. Physics-constrained intraventricular vector flow mapping by color Doppler. Phys. Med. Biol. 2021, 66, 245019. [Google Scholar] [CrossRef] [PubMed]
Parameter | Control (n = 11) | BAV (n = 49) | p-Value |
---|---|---|---|
Age (years) | 32 ± 14 | 45 ± 17 | 0.005 |
Sex, n female (%) | 7 (64) | 14 (29) | 0.029 |
BSA (m2) | 1.77 ± 0.24 | 1.98 ± 0.23 | 0.010 |
Cigarette smoking n (%) | 8 (16%) | ||
Alcohol consumption n (%) | |||
None | 25 (51%) | ||
Occasional (<1 drink/day) | 6 (12%) | ||
Regular (>1 drink/day) | 18 (37%) | ||
Diabetes mellitus n (%) | - | ||
Hypertension n (%) | 2 (4%) | ||
Dyslipidemia n (%) | 1 (2%) | ||
Hypothyroidism n (%) | - | ||
Chronic kidney disease n (%) | - | ||
Atrial fibrillation n (%) | |||
Paroxysmal | 1 (2%) | ||
Persistent | - | ||
Dyspnea (NYHA class ≥ II) n (%) | - | ||
Obesity n (%) | 8 (16%) | ||
Medications | |||
Aspirin n (%) | 3 (6%) | ||
Beta blockers n (%) | 9 (18%) | ||
ACIi/ARB n (%) | 12 (24%) | ||
Calcium channel blocker n (%) | - | ||
Anti-coagulant n (%) | 3 (6%) | ||
Loop diuretic n (%) | - | ||
Statin n (%) | 8 (16%) | ||
CMR | |||
LVEDVi (mL/m2) | 87 ± 16 | 94 ± 24 | 0.083 |
LVESVi (mL/m2) | 33 ± 9 | 38 ± 14 | 0.086 |
LVEF (%) | 63 ± 6 | 60 ± 11 | 0.308 |
LV mass indexed (g/m2) | 52 ± 10 | 63 ± 21 | 0.002 |
AAo diameter indexed (mm/m2) | 15.8 ± 2.5 | 19.3 ± 3.5 | 0.005 |
Parameter | Control (n = 11) | BAV (n = 49) | p-Value | Cohen’s d |
---|---|---|---|---|
DF (%) | 32 (27, 37) | 26 (25, 30) | 0.135 | 0.446 |
DE (%) | 25 (24, 30) | 23 (23, 26) | 0.134 | 0.453 |
RI (%) | 22 (18, 23) | 19 (17, 20) | 0.106 | 0.484 |
RV (%) | 22 (16, 26) | 28 (27, 32) | 0.003 | −0.964 |
KE DF Max (µJ) | 2336 (1637, 3189) | 2688 (2606, 3528) | 0.339 | −0.405 |
KE DE Max (µJ) | 1907 (1220, 2480) | 2216 (2347, 3721) | 0.178 | −0.506 |
KE RI Max (µJ) | 1094 (641, 1293) | 1178 (1243, 1805) | 0.166 | −0.577 |
KE RV Max (µJ) | 304 (179, 469) | 628 (725, 1297) | 0.016 | −0.713 |
KE DF Mean (µJ) | 682 (476, 903) | 785 (742, 1034) | 0.225 | −0.391 |
KE DE Mean (µJ) | 450 (312, 577) | 595 (585, 1028) | 0.048 | −0.483 |
KE RI Mean (µJ) | 273 (167, 323) | 338 (323, 481) | 0.080 | −0.583 |
KE RV Mean (µJ) | 115 (71, 195) | 245 (276, 495) | 0.006 | −0.685 |
Parameter | Nonsurgical (n = 35) | Surgical (n = 14) | p-Value |
---|---|---|---|
Age (years) | 44 ± 17 | 50 ± 14 | 0.28 |
Sex, n female (%) | 11 (31) | 3 (21) | 0.356 |
BSA (m2) | 2.00 ± 0.25 | 1.97 ± 0.19 | 0.676 |
Aortic stenosis | |||
Mild n (%) | 4 (11) | 1 (7) | |
Moderate n (%) | 2 (6) | 3 (21) | |
Severe n (%) | 0 (0) | 4 (29) | |
Aortic regurgitation | |||
Mild n (%) | 6 (17) | 4 (29) | |
Moderate n (%) | 2 (6) | 0 (0) | |
Severe n (%) | 0 (0) | 1 (7) | |
Aortic dilation | |||
Mild n (%) | 4 (11) | 3 (21) | |
Moderate n (%) | 6 (17) | 1 (7) | |
Severe n (%) | 1 (3) | 3 (21) | |
Surgical referral | |||
Aortic repair n (%) | 2 | ||
Valve replacement n (%) | 9 | ||
Aortic repair and valve replacement n (%) | 3 | ||
CMR | |||
LVEDVi (mL/m2) | 89 ± 19 | 104 ± 29 | 0.059 |
LVESVi (mL/m2) | 37 ± 12 | 40 ± 17 | 0.502 |
LVEF (%) | 59 ± 11 | 63 ± 7 | 0.207 |
LV mass indexed (g/m2) | 59 ± 15 | 71 ± 30 | 0.081 |
AAo diameter indexed (mm/m2) | 18.4 ± 2.9 | 22.1 ± 3.5 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatehi Hassanabad, A.; Garcia, J. Intra-Cardiac Kinetic Energy and Ventricular Flow Analysis in Bicuspid Aortic Valve: Impact on Left Ventricular Function, Dilation Severity, and Surgical Referral. Fluids 2025, 10, 5. https://doi.org/10.3390/fluids10010005
Fatehi Hassanabad A, Garcia J. Intra-Cardiac Kinetic Energy and Ventricular Flow Analysis in Bicuspid Aortic Valve: Impact on Left Ventricular Function, Dilation Severity, and Surgical Referral. Fluids. 2025; 10(1):5. https://doi.org/10.3390/fluids10010005
Chicago/Turabian StyleFatehi Hassanabad, Ali, and Julio Garcia. 2025. "Intra-Cardiac Kinetic Energy and Ventricular Flow Analysis in Bicuspid Aortic Valve: Impact on Left Ventricular Function, Dilation Severity, and Surgical Referral" Fluids 10, no. 1: 5. https://doi.org/10.3390/fluids10010005
APA StyleFatehi Hassanabad, A., & Garcia, J. (2025). Intra-Cardiac Kinetic Energy and Ventricular Flow Analysis in Bicuspid Aortic Valve: Impact on Left Ventricular Function, Dilation Severity, and Surgical Referral. Fluids, 10(1), 5. https://doi.org/10.3390/fluids10010005