The Lattice Boltzmann Method with Deformable Boundary for Colonic Flow Due to Segmental Circular Contractions
Abstract
:1. Introduction
1.1. The Motility in Small Intestine
1.2. The Colonic Motility
1.3. The Dynamic Colon Model (DCM)
1.4. The DCM “Digital Twin” (DCMDT)
1.5. Summary on the Numerical Aspects
1.6. Towards the LBM Colonic Modeling
2. Materials and Methods
2.1. The DCM, MRI and LBM-DB: Geometry, Luminal Occlusion, Motility and Flow
2.1.1. Geometry
2.1.2. Luminal Occlusion
2.1.3. Motility
- 1.
- : from to ;
- 2.
- : from to ;
- 3.
- : from to ;
- 4.
- : from to ;
- 5.
- : from to .
2.1.4. Fluid
- 1.
- : , , .
- 2.
- : , , .
2.1.5. Entry/Exit
2.1.6. The MRI Velocity Measurements in the DCM
2.2. The LBM with the Deformable Boundary (LBM-DB)
2.2.1. : Main Steps
- (a)
- . The local variables of the method are real numbers called populations; their post-collision values are computed via a local linear collision transformation, then they are streamed to the directional neighbors: .
- (b)
- . We let denote a (virtual) fluid–solid interface at time t; can be composed of static and moving, or deforming, components. A fluid node is called a boundary node if it has at least one cut link such that with .defines with the individually prescribed boundary rule for a cut link population solution .
- (c)
- . When is performed on fluid set , the fluid-solid interface moves towards , where each solid node transformed into fluid boundary node is called a “fresh” node .(re)fill defines population solution on all newborn nodes.
- (d)
- . is the main component of reconstruction , which in addition can also include several preparatory operations, such as population and/or macroscopic field interpolations; and may iterate adapting ideas [94,95,96]. tries to avoid population interpolations, having a preference to the use of as much as possible in the “fresh” nodes.
- 1.
- Collision-Stream Boundary step to define for ;
- 2.
- Advancement from to ;
- 3.
- Identification of “fresh” nodes ;
- 4.
- Reconstruction to define for ;
- 5.
- Identification of fluid list ;
- 6.
- Identification of boundary list ;
- 7.
- Return to Step 1.
2.2.2. The c-s-Step
2.2.3. The bc-Step
- 1.
- the has an upstream solid neighbor ;
- 2.
- the has an upstream fluid neighbor but the solid second neighbor ;
- 3.
- the has two upstream fluid neighbors .
- 1.
- a : with in Equation (10).
- 2.
- a : or with ;
- 3.
- a : with or with .
2.2.4. The Reconstruction r-Step
- 1.
- a has an upstream “fresh” neighbor ; in particular, an immobile velocity .
- 2.
- a has an upstream solid neighbor, hence with .
- 3.
- the remaining are sub-divided into the , where solution is to be obtained by propagation from an upstream neighbor, and those which are opposed to the cut links, where solution is to be reconstructed with the .
- 1.
- the sub-step: ;
- 2.
- the sub-step: is defined by Equation (10) using directional approximations from Appendix B.3.1 for some unknown components;
- 3.
- 4.
- the sub-step: is set equal to an averaged extrapolated solution detailed in Appendix B.3.3;
- 5.
- the sub-step: the is defined with the single-node -rule using an extrapolated solution and at the first step of an iterative update.
- 1.
- applies the sub-step with Equations (A2) and (A3) for all tangential and corner links following [78]. This algorithm requires velocity interpolation to “fresh” nodes as an initial estimate in an iterative update (see sub-step in Appendix B.3.1).
- 2.
- 3.
- applies:
- (a)
- the sub-step for the moving ;
- (b)
- the sub-step for the using as an initial estimate in an iterative update;
- (c)
The local iterative update () is optionally applied in the “fresh” nodes with the ideas of the () algorithms [95] but completely independently in one node compared to another. In our implementation, iteratively performs the local collision operator followed by the , without any streaming nor to or between new nodes. So, essentially serves us to update and , then to iterate their solution with the .The robustness of the improves when an (unknown) post-collision correction in Equation (11) is set to zero in an initial step, then applies its updated values. Note that the populations obtained with the sub-step are not updated by the , because the extrapolations only involve the “old” fluid nodes; at the same time, an equilibrium reconstruction can benefit, in the presence of the moving and/or , from an iterative update of momentum in Equations (A2) and (A3).
2.2.5. Pre-Selected Algorithms
3. Results
3.1. Occlusion Scenarios and Geometry
- 1.
- 2.
- in Figure 6 constructs the “P” contour from the distances provided in Figure S1 [9]. According to Table A1, distance to the parabolic boundary along the median linearly expresses through the sector value of the open surface, with in the considered symmetric case where the solution readsReplacing in Equation (14) by , and , the two distances from Figure S1 [9], (i) , and (ii) , give two equations with respect to three unknown fractions, like (i) and (ii) , where we substitute . Two other conditions [9] are (iii) and (iv) . These four equations cannot be satisfied simultaneously, applies the appropriate solution to Equations(i)–(iii), where and then ; a deviation from [9] should occur due to a (slight) difference in the cross-section shape and surface value, but may also apply non-identical definitions of the occlusion degree.
- 3.
- 4.
- 5.
3.2. Membrane Deformation with the LBM-DB
3.3. Parameter Space
- the time scale from the physical to lattice units:when ;
- the velocity scale from the lattice to physical units: when .
3.4. Numerical Experiments
3.5. Motility Pattern MOT-I
3.5.1. The MOT-I ∪ OCL-1
3.5.2. MOT-I ∪ OCL-2
3.5.3. MOT-I ∪ OCL-3
3.5.4. MOT-I ∪ OCL-4
3.5.5. MOT-I ∪ OCL-5
3.5.6. Motility Pattern : Summary
3.6. MOT-II vs. MOT-I
3.7. LBM-DB: Stability vs. Compressibility
3.8. LBM-DB: Numerical Performance
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Circular and “Parabolic” Membranes
p(i) | ||||
---|---|---|---|---|
1 | 0 | |||
Appendix B. Addition on LBM-DB in Section 2.2
Appendix B.1. The ParPac Code: Structure and Parallelization
- 1.
- : has no solid directional neighbors;
- 2.
- : has only static-solid directional neighbors;
- 3.
- : has at least one moving-solid neighbor.
- 1.
- : has no fluid neighbors.
- 2.
- : has at least one fluid neighbor.
Appendix B.2. Classification of the Boundary Rules
- 1.
- The single-node class [79]: yields in Equation (10), with typically or there, while apply . provides an exact linear (Couette) velocity profile in an arbitrarily grid-inclined channel using the Stokes equilibrium ( in Equation (4a)); this property is abbreviated as accuracy; this property extends to equilibrium ( in Equation (4a)) in a straight channel. Three coefficients are derived from the directional linearly accurate Taylor approximation of the Dirichlet velocity condition, and they are expressed by Equation (46) [79] via the free adjustable coefficients and from Equation (13).
- (a)
- Class sets and defines its coefficients with respect to with Equations (53)–(54) [79]. Additionally, class prescribes in Equation (11), while its coefficient of the anti-symmetric post-collision correction is distinctive between the three sub-classes , here : (i) guarantees the parametrization; (ii) additionally, makes the Poiseuille Stokes flow exact in an arbitrarily inclined channel, abbreviated as ; (iii) holds parametrization and makes the Dirichlet velocity closure relation independent of the pressure gradient, abbreviated as .
- (b)
- The local single-node class [79] is built with ideas from [94]; its coefficients are defined by Equations (53) and (54) [79]; does not need to have a fluid upstream neighbor because it sets . However, in addition to , must prescribe the symmetric boundary value in Equation (12), as well as the symmetric post-collision terms in Equation (11) with implementation [79]; the implementation in “fresh” nodes is postponed to future work because of these two additional approximations, which can be computed in principle with an initial estimate and then updated with the .
- 2.
- The two-node class [48,78,79] ensures the combined accuracy due to its five non-zero coefficients in Equation (10); it is most suitable with the offering , while can apply it with , . Class , which is a recent extension [48,79] of , additionally makes the second-order pressure gradient vanish from the Dirichlet velocity closure condition, abbreviated as , and it demonstrates the most accurate solutions [79]. operates with , and its coefficients are given in Table VI [79].
- 3.
- Class updates class , originally described with the correction given by Equation (5.6) [44] and Equations (50), (53) [81]. In the present context, simply complements the term of in Equation (11) with parabolic correction ; then satisfies both the and criteria and therefore matches their combined accuracy of the condition. Here, a three-point asymmetric finite-difference directional approximation of is computed with (1) the downstream Dirichlet value , (2) the local solution , and (3) the upstream solution (see Equation (5.14) [44], Equation (53) [81]). In principle, applies in corner links using the Dirichlet velocity values of their two directional solid neighbors [44,92], while a new node can compute with an extrapolated momentum value of on the first sub-step of the update, then with an effective momentum value in subsequent iterations.
Appendix B.3. Reconstruction r-Step
Appendix B.3.1. Fill-Boundary f-bc Sub-Step
- 1.
- due to streaming from to .
- 2.
- due to potential streaming from to .
- 3.
- where replaces in the two-point linear interpolation due to streaming step .
- 4.
- in Equation (11) with the second-order accuracy. Since is not available in , applies there as an initial guess and then, optionally, updates this approximation.
Appendix B.3.2. Preliminary Velocity Approximation a-vel
- 1.
- in the presence of corner links, averages their linear velocity approximations which are computed from the two Dirichlet values .
- 2.
- otherwise, averages the first-order accurate linear interpolations computed along the cut links between the Dirichlet value and the known value .
Appendix B.3.3. Fill-Extrapolation Sub-Step f-extr
- 1.
- for and with the sub-step.
- 2.
- with the sub-step in as an initial guess.
Appendix B.3.4. Fill-Equilibrium Sub-Step f-equil
Appendix B.4. Deformable Channel Flow: Simulation Results
Appendix C. Complementary Numerical Results
cf. | |||||||||
cf. |
Appendix C.1. Motility Pattern MOT-II
Appendix C.1.1. The MOT-II ∪ OCL-1
Appendix C.1.2. MOT-II ∪ OCL-2
Appendix C.1.3. MOT-II ∪ OCL-3
Appendix C.1.4. MOT-II ∪ OCL-4
Appendix C.1.5. The MOT-II ∪ OCL-5
Appendix C.2. LBM-DB Results in Table A2–Table A11
References
- Corsetti, M.; Costa, M.; Bassotti, G.; Bharucha, A.E.; Borrelli, O.; Dinning, P.; Di Lorenzo, C.; Huizinga, J.D.; Jimenez, M.; Rao, S.; et al. First translational consensus on terminology and definitions of colonic motility in animals and humans studied by manometric and other techniques. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 559–579. [Google Scholar] [CrossRef] [PubMed]
- Schulze, K.S. The imaging and modelling of the physical processes involved in digestion and absorption. Acta Physiol. 2014, 213, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Palmada, N.; Cater, J.E.; Cheng, L.K.; Suresh, V. Experimental and computational studies of peristaltic flow in a duodenal model. Fluids 2022, 7, 40. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, P.; Jeantet, R.; Dupont, D.; Delaplace, G.; Chen, X.D.; Xiao, J. How motility can enhance mass transfer and absorption in the duodenum: Taking the structure of the villi into account. Chem. Eng. Sci. 2020, 213, 115406. [Google Scholar] [CrossRef]
- Lim, Y.F.; de Loubens, C.; Love, R.J.; Lentle, R.G.; Janssen, P.W.M. Flow and mixing by small intestine villi. Food Funct. 2015, 6, 1787. [Google Scholar] [CrossRef] [PubMed]
- Cremer, J.; Arnoldini, M.; Hwa, T. Effect of water flow and chemical environment on microbiota growth and composition in the human colon. Proc. Natl. Acad. Sci. USA 2017, 114, 6438–6443. [Google Scholar] [CrossRef]
- Pal, A.; Indireshkumar, K.; Schwizer, W.; Abrahamsson, B.; Fried, M.; Brasseur, J.G. Gastric flow and mixing studied using computer simulation. Proc. R. Soc. B Biol. Sci. 2004, 271, 2587–2594. [Google Scholar] [CrossRef] [PubMed]
- Zha, J.; Zou, S.; Xao, J.; Liu, X.; Delaplace, G.; Jeantet, R.; Dupont, D.; Wu, P.; Chen, X.D.; Xiao, J. The role of circular folds in mixing intensification in the small intestine: A numerical study. Chem. Eng. Sci. 2021, 229, 116079. [Google Scholar] [CrossRef]
- Stamatopoulos, K.; Karandikar, S.; Goldstein, M.; O’Farrell, C.; Marciani, L.; Sulaiman, S.; Hoad, C.L.; Simmons, M.J.H.; Batchelor, H.K. Dynamic colon model (DCM): A cine-MRI informed biorelevant in vitro model of the human proximal large intestine characterized by positron imaging techniques. Pharmaceutics 2020, 12, 659. [Google Scholar] [CrossRef]
- O’Farrell, C.; Stamatopoulos, K.; Simmons, M.; Batchelor, H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv. Drug Deliver. Rev. 2021, 178, 113924. [Google Scholar] [CrossRef]
- Schütt, M.; Stamatopoulos, K.; Batchelor, H.K.; Simmons, M.J.H.; Alexadis, A. Modelling and Simulation of the Drug Release from a Solid Dosage Form in the Human Ascending Colon: The Influence of Different Motility Patterns and Fluid Viscosities. Pharmaceutics 2021, 13, 859. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.Y.; Yu, Y.-J.; Fei, F.; Zheng, M.-Y.; Zhang, S.W. High-resolution colonic manometry and its clinical application in patients with colonic dysmotility: A review. World J. Clin. Cases 2019, 7, 2675–2686. [Google Scholar]
- Huizinga, J.D.; Hussain, A.; Chen, J.-H. Interstitial cells of Cajal and human colon motility in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 321, G552–G575. [Google Scholar] [CrossRef] [PubMed]
- Spencer, N.J.; Kyloh, M.; Wattchow, D.A.; Thomas, A.; Sia, T.C.; Brookes, S.J.; Nicholas, S.J. Characterization of motor patterns in isolated human colon: Are there differences in patients with slow-transit constipation? Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G34–G43. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; de Loubens, C.; Dubreuil, A.; Faucheron, J.L.; Tanguy, S. Towards an assessment of rectal function by coupling X-ray defecography and fluid mechanical modelling. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2022, 2022, 4962–4965. [Google Scholar]
- Trzpis, M.; Sun, G.; Chen, J.-H.; Huizinga, J.-D.; Broens, P. Novel insights into physiological mechanisms underlying fecal continence. Am. J. Physiol. Gastrointest. Liver Physiol. 2023, 324, G1–G9. [Google Scholar] [CrossRef] [PubMed]
- Dinning, P.G.; Wiklendt, L.; Maslen, L.; Gibbins, I.; Patton, V.; Arkwright, J.W.; Lubowski, D.Z.; O’Grady, G.; Bampton, P.A.; Brookes, S.J.; et al. Quantification of in vivo colonic motor patterns in healthy humans before and after a meal revealed by high-resolution fiber-optic manometry. Neurogastroenterol. Motil. 2014, 26, 1443–1457. [Google Scholar] [CrossRef] [PubMed]
- Kuizenga, M.H.; Sia, T.C.; Dodds, K.N.; Wiklendt, L.; Arkwright, J.W.; Thomas, A.; Brookes, S.J.; Spencer, N.J.; Wattchow, D.A.; Dinning, P.G.; et al. Neurally mediated propagating discrete clustered contractions superimposed on myogenic ripples in ex vivo segments of human ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 308, G1–G11. [Google Scholar] [CrossRef]
- Lin, A.Y.; Du, P.; Dinning, P.G.; Arkwright, J.W.; Kamp, J.P.; Cheng, L.K.; Bissett, I.P.; O’Grady, G. High-resolution anatomic correlation of cyclic motor patterns in the human colon: Evidence of a rectosigmoid brake. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G508–G515. [Google Scholar] [CrossRef]
- Dinning, P.G. A new understanding of the physiology and pathophysiology of colonic motility? Neurogastroenterol. Motil. 2018, 30, e13395. [Google Scholar] [CrossRef] [PubMed]
- Milkova, N.; Parsons, S.P.; Ratcliffe, E.; Huizinga, J.D. On the nature of high-amplitude propagating pressure waves in the human colon. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G646–G660. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, R.; Xiu, H.; Kong, F. Development of a small intestinal simulator to assess the intestinal mixing and transit as affected by digesta viscosity. Innovat. Food Sci. Emerg. Technol. 2022, 82, 103202. [Google Scholar] [CrossRef]
- Huizinga, J.D.; Parsons, S.P.; Chen, J.-H.; Pawelka, A.; Pistilli, M.; Li, C.; Yu, Y.; Ye, P.; Liu, Q.; Tong, M.; et al. Motor patterns of the small intestine explained by phase-amplitude coupling of two pacemaker activities: The critical importance of propagation velocity. Am. J. Physiol. Cell Physiol. 2015, 309, C403–C414. [Google Scholar] [CrossRef] [PubMed]
- Fullard, L.; Lammers, W.; Wakec, G.C.; Ferrua, M.J. Propagating longitudinal contractions in the ileum of the rabbit—Efficiency of advective mixing. Food Funct. 2014, 5, 2731–2742. [Google Scholar] [CrossRef] [PubMed]
- Fullard, L.; Lammers, W.J.; Ferrua, M.J. Advective mixing due to longitudinal and segmental contractions in the ileum of the rabbit. J. Food Eng. 2015, 160, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Brasseur, J.G.; Banco, G.G.; Webb, A.G.; Ailiani, A.C.; Neuberger, T. A multi-scale Lattice Boltzmann model of macro-to-micro scale transport, with applications to gut function. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 2683–2880. [Google Scholar]
- Wang, Y.; Brasseur, J.G. Three-dimensional mechanisms of macro-to-micro-scale transport and absorption enhancement by gut villi motions. Phys. Rev. E 2017, 95, 062412. [Google Scholar] [CrossRef] [PubMed]
- Agbesi, R.A.; Chevalier, N. Flow and mixing induced by single, colinear, and colliding contractile waves in the intestine. Phys. Rev. Fluids 2022, 7, 043101. [Google Scholar] [CrossRef]
- Palmada, N.; Cater, J.E.; Cheng, L.K.; Suresh, V. Anatomically realistic computational model of flow and mixing in the human duodenum. Phys. Fluids 2023, 35, 011907. [Google Scholar] [CrossRef]
- Pistilli, M.J. Mechanisms Underlying Rhythmic Activities in the Gastrointestinal Tract. Master’s Thesis, McMaster University, Hamilton, ON, Canada, 2012. [Google Scholar]
- Pritchard, S.E.; Paul, J.; Major, G.; Marciani, L.; Gowland, P.A.; Spiller, R.C.; Hoad, C.L. Assessment of motion of colonic contents in the human colon using MRI tagging. Neurogastroenterol. Motil. 2017, 29, e13091. [Google Scholar] [CrossRef]
- de Loubens, C.; Lentle, R.G.; Love, R.J.; Hulls, C.; Janssen, P.W. Fluid mechanical consequences of pendular activity, segmentation and pyloric outflow in the proximal duodenum of the rat and the guinea pig. J. R. Soc. Interface 2013, 10, 20130027. [Google Scholar] [CrossRef]
- de Loubens, C.; Lentle, R.G.; Hulls, C.; Janssen, P.W.; Love, R.J.; Chamber, J.P. Characterisation of Mixing in the Proximal Duodenum of the Rat during Longitudinal Contractions and Comparison with a Fluid Mechanical Model Based on Spatiotemporal Motility Data. PLoS ONE 2014, 9, e95000. [Google Scholar] [CrossRef]
- Canon, W.B. The movements of the intestines studied by means of the Röntgen rays. J. Med. Res. 1902, 7, 72–75. [Google Scholar] [CrossRef]
- Womack, W.A.; Kvietys, P.R.; Granger, D.N. Villious Motility. In Handbook of Physiology, 2nd ed.; Schultz, S.G., Wood, J.D., Rauner, B.B., Eds.; American Physiological Society: Bethesda, MD, USA, 1989; pp. 975–986. [Google Scholar]
- Codutti, A.; Cremer, J.; Alim, K. Changing Flows Balance Nutrient Absorption and Bacterial Growth along the Gut. Phys. Rev. Lett. 2022, 129, 138101. [Google Scholar] [CrossRef] [PubMed]
- Lammers, W.J. Spatial and temporal coupling between slow waves and pendular contractions. Am. J. Physiol.-Gastrointest. Liver Physiol. 2005, 289, G898–G903. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-T.; Hennig, G.W.; Fleming, N.W.; Keef, K.D.; Spencer, N.J.; Ward, S.M.; Sanders, K.M.; Smith, T.K. The mechanism and spread of pacemarker activity through myenteric interstitial cells of Cajal in human small intestine. Gastroentorology 2007, 132, 1852–1865. [Google Scholar] [CrossRef] [PubMed]
- Melepattu, M.P.; de Loubens, C. Steady streaming flow induced by active biological microstructures; application to small intestine villi. Phys. Fluids 2022, 34, 061905. [Google Scholar] [CrossRef]
- Higuera, F.; Succi, S.; Benzi, R. Lattice Gas Dynamics with Enhanced Collisions. Europhys. Lett. 1989, 9, 345. [Google Scholar] [CrossRef]
- Qian, Y.; d’Humières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation, Europhys. Lett. 1992, 17, 479. [Google Scholar]
- Lallemand, P.; Luo, L.-S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E. 2000, 61, 6546. [Google Scholar] [CrossRef]
- d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.-S. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. A 2002, 360, 437. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, I.; Verhaeghe, F.; d’Humières, D. Two-relaxation-time Lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 2008, 3, 427–478. [Google Scholar]
- d’Humières, D.; Ginzburg, I. Viscosity independent numerical errors for Lattice Boltzmann models: From recurrence equations to “magic” collision numbers. Comput. Math. Appl. 2009, 58, 823. [Google Scholar] [CrossRef]
- Silva, G.; Semiao, V. Truncation errors and the rotational in-variance of three-dimensional lattice models in the lattice Boltzmann method. J. Comput. Phys. 2014, 269, 259. [Google Scholar] [CrossRef]
- Chai, Z.; Shi, B. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements. Phys. Rev. E 2020, 102, 023306. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, I. Steady-state Two-relaxation-time Lattice Boltzmann formulation for transport and flow, closed with the compact multireflection boundary and interface-conjugate schemes. J. Comp. Sci. 2021, 54, 101215. [Google Scholar] [CrossRef]
- Christensen, J. Gross and Microscopic Anatomy of the Large Intestine. Chapter 2 in The Large Intestine: Physiology, Pathophysiology, and Disease; Raven Press: New York, NY, USA, 1991. [Google Scholar]
- Quan, X.; Yang, Z.; Xue, M.; Chen, J.-H.; Huizinga, J.D. Relationships between motor patterns and intraluminal pressure in the 3-taeniated proximal colon of the rabit. Nat. Sci. Rep. 2017, 7, 42293. [Google Scholar]
- Chen, J.-H.; Yang, Z.; Yu, Z.Y.; Huizinga, J.D. Haustral boundary contractions in the proximal 3-taeniated colon of the rabbit. Am. J. Physiol. 2016, 310, G181–G192. [Google Scholar] [CrossRef]
- High-definition spatiotemporal mapping of contractile activity in the isolated proximal colon of the rabbit. J. Comp. Physiol. B 2008, 178, 257–268. [CrossRef]
- Huizinga, J.D.; Pervez, M.; Nirmalathasan, S.; Chen, J.-H. Characterization of haustral activity in the human colon. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G1067–G1080. [Google Scholar] [CrossRef] [PubMed]
- Blausen.com staff. Medical gallery of Blausen Medical 2014. WikiJ. Med. 2014, 1. ISSN 2002-4436. [Google Scholar] [CrossRef]
- Spencer, N.J.; Dinning, P.G.; Brookes, S.J.; Costa, M. Insights into the mechanisms underlying colonic motor patterns. J. Physiol. 2016, 594, 4099–4116. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Yu, Y.; Yang, Z.; Yu, W.Z.; Chen, W.L.; Yu, H.; Kim, M.J.-M.; Huang, M.; Tan, S.; Luo, H.; et al. Intraluminal pressure patterns in the human colon assessed by high-resolution manometry. Sci. Rep. 2017, 7, 41436. [Google Scholar] [CrossRef] [PubMed]
- Pervez, M.; Ratcliffe, E.; Parsons, S.P.; Chen, J.-H.; Huizinga, J.D. The cyclic motor patterns in the human colon. Neurogasterinterol. Motil. 2020, 32, e13807. [Google Scholar] [CrossRef] [PubMed]
- Jaung, R.; Varghese, C.; Lin, A.Y.; Paskaranandavadivel, N.; Du, P.; Rowbotham, D.; Dinning, P.; O’Grady, G.; Bissett, I. High Resolution Colonic Manometry Pressure Profiles Are Similar in Asymptomatic Diverticulosis and Controls. Digest. Dis. Sci. 2021, 66, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Cremer, J.; Segota, I.; Yang, C.-Y.; Arnoldini, M.; Sauls, J.T.; Zhang, Z.; Gutierrez, E.; Groisman, A.; Hwa, T. Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel. Proc. Natl. Acad. Sci. USA 2016, 113, 11414–11419. [Google Scholar] [CrossRef] [PubMed]
- Labarthe, S.; Polizzi, B.; Phan, T.; Goudon, T.; Ribot, T.; Laroche, T. A mathematical model to investigate the key drivers of the biogeography of the colon microbiota. J. Theor. Biol. 2019, 462, 552–581. [Google Scholar] [CrossRef] [PubMed]
- Arkwright, J.W.; Dickson, A.; Maunder, S.A.; Blenman, N.G.; Lim, J.; O’Grady, G.; Archer, R.; Costa, M.; Spencer, N.J.; Brookes, S.J.; et al. The effect of luminal content and rate of occlusion on the interpretation of colonic manometry. Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc. 2013, 25, e52–e59. [Google Scholar] [CrossRef]
- Kamaltdinov, M.R.; Kuchumov, A.G.; Sadeghy, K. Chyme flow numerical modelling in the colon in normal conditions and in disorders. Ser. Biomech. 2022, 36, 105–112. [Google Scholar]
- Stamatopoulos, K.; Batchelor, H.K.; Simmons, M.J. Dissolution profile of theophylline modified release tablets, using a biorelevant Dynamic Colon Model (DCM). Eur. J. Pharm. Biopharm. 2016, 108, 9–17. [Google Scholar] [CrossRef] [PubMed]
- O’Farrell, C.; Hoad, C.L.; Stamatopoulos, K.; Marciani, L.; Sulaiman, S.; Simmons, M.J.H.; Batchelor, H.K. Luminal Fluid Motion Inside an In Vitro Dissolution Model of the Human Ascending Colon Assessed Using Magnetic Resonance Imaging. Pharmaceutics 2021, 13, 1545. [Google Scholar] [CrossRef] [PubMed]
- Sinnot, M.D.; Cleary, P.W.; Arkwright, J.W.; Dinning, P.G. Investigating the relationships between peristaltic contraction and fluid transport in the human colon using Smoothed Particle Hydrodynamics. Comput. Biol. Med. 2012, 42, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Alexiadis, A.; Stamatopoulos, K.; Wen, W.; Batchelor, H.K.; Batchelor, H.K.; Bakalis, S.; Barigou, M.; Simmons, M.J.H. Using discrete multi-physics for detailed exploration of hydrodynamics in an in vitro colon system. Comput. Biol. Med. 2017, 81, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Schütt, M.; Stamatopoulos, K.; Simmons, M.J.H.; Batchelor, H.K.; Alexadis, A. Modelling and simulation of the hydrodynamics and mixing profiles in the human proximal colon using Discrete Multiphysics. Comput. Biol. Med. 2020, 121, 103819. [Google Scholar] [CrossRef] [PubMed]
- Schütt, M.; O’Farrell, C.; Stamatopoulos, K.; Hoad, C.L.; Marciani, L.; Sulaiman, S.; Simmons, M.J.H.; Batchelor, H.K.; Alexadis, A. Simulating the Hydrodynamic Conditions of the Human Ascending Colon: A Digital Twin of the Dynamic Colon Model. Pharmaceutics 2022, 14, 1402. [Google Scholar] [CrossRef] [PubMed]
- Lätt, J.; Malaspinas, O.; Kontaxakis, D.; Parmigiani, A.; Lagrava, D.; Brogi, F.; Belgacem, M.B.; Thorimbert, Y.; Leclaire, S.; Li, S.; et al. Palabos: Parallel Lattice Boltzmann Solver. Comput. Math. Appl. 2021, 81, 334–350. [Google Scholar] [CrossRef]
- Ginzburg, I.; Silva, G.; Talon, L. Analysis and improvement of Brinkman lattice Boltzmann schemes: Bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media. Phys. Rev. E. 2015, 91, 023307-32. [Google Scholar] [CrossRef] [PubMed]
- Ouared, R.; Chopard, B.; Stahl, B.; Rfenacht, D.; Yilmaz, H.; Courbebaisse, G. Thrombosis modeling in intracranial aneurysms: A lattice Boltzmann numerical algorithm. Comput. Phys. Commun. 2008, 179, 128–131. [Google Scholar] [CrossRef]
- Zhang, Y. Hemodynamic Investigation and Thrombosis Modeling of Intracranial Aneurysms. Ph. D. Dissertation, INSA, Lyon, France, 2015. [Google Scholar]
- Zhang, Y.; Wang, Y.; Kao, E.; Flórez-Valencia, L.; Courbebaisse, G. Towards optimal flow diverter porosity for the treatment of intracranial aneurysm. J. Biomech. 2019, 82, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Noël, R.; Ge, F.; Zhang, Y.; Navarro, L.; Courbebaisse, G. Lattice Boltzmann Method for Modelling of Biological Phenomena. In Proceedings of the 25th European Signal Processing Conference (EUSIPCO), Kos Island, Greece, 28 August–2 September 2017. [Google Scholar]
- Krüger, T. Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells Under Shear; Springer Spektrum|Springer Fachmedien Wiesbaden GmbH: Wiesbaden, Germany, 2012. [Google Scholar]
- Chopard, B.; de Sousa, D.R.; Latt, J.; Dubois, F.; Yourassowsky, C.; Van Antwerpen, P.; Eker, O.; Vanhamme, L.; Perez-Morga, D.; Courbebaisse, G. A physical description of the adhesion and aggregation of platelets. R. Soc. Open Sci. 2017, 4, 170219. [Google Scholar] [CrossRef]
- Kotsalos, C. Digital Blood. Ph. D. Dissertation, Université de Genève, Geneva, Switzerland, 2020. [Google Scholar]
- Ginzburg, I.; d’Humières, D. Multi-reflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 2003, 68, 066614-1-30. [Google Scholar]
- Ginzburg, I.; Silva, G.; Marson, F.; Chopard, B.; Latt, J. Unified directional parabolic-accurate lattice Boltzmann boundary schemes for grid-rotated narrow gaps and curved walls in creeping and inertial fluid flows. Phys. Rev. E 2023, 107, 025303-49. [Google Scholar] [CrossRef] [PubMed]
- Ginzbourg, I.; d’Humières, D. Local Second-Order Boundary method for Lattice Boltzmann models. J. Stat. Phys. 1996, 84, 927. [Google Scholar] [CrossRef]
- Khirevich, S.; Ginzburg, I.; Tallarek, U. Coarse- and fine-grid numerical behavior of MRT/TRT Lattice-Boltzmann schemes in regular and random sphere packings. J. Comput. Phys. 2014, 281, 708. [Google Scholar] [CrossRef]
- Ginzburg, I.; Silva, G. Mass-balance and locality vs accuracy with the new boundary and interface-conjugate approaches in advection-diffusion lattice Boltzmann method. Phys. Fluids 2021, 33, 057104. [Google Scholar] [CrossRef]
- Yu, H.; Chen, X.; Wang, Z.; Deep, D.; Lima, E.; Zhao, Y.; Teague, S.D. Mass-conserved volumetric lattice Boltzmann method for complex flows with fully moving boundaries. Phys. Rev. E 2014, 89, 063304. [Google Scholar] [CrossRef]
- Feng, Z.G.; Michaelides, E.E. The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems. J. Comput. Phys. 2004, 195, 602. [Google Scholar] [CrossRef]
- Pepona, M.; Favier, J. A coupled Immersed Boundary—Lattice Boltzmann method for incompressible flows through moving porous media. J. Comput. Phys. 2016, 321, 1170. [Google Scholar] [CrossRef]
- Seta, T.; Rojas, R.; Hayashi, K.; Tomiyama, A. Implicit-correction-based immersed boundary-lattice Boltzmann method with two-relaxation time. Phys. Rev. E 2014, 89, 023307. [Google Scholar] [CrossRef]
- Wang, S.; Yan, H.; Cai, Y.; Pan, G.; Zhang, G.; Song, D. Accurate simulations of moving flexible objects with an improved immersed boundary-lattice Boltzmann method. Phys. Fluids 2024, 36, 11. [Google Scholar]
- Thorimbert, Y.; Marson, F.; Parmigiani, A.; Chopard, B.; Latt, J. Lattice Boltzmann simulation of dense rigid spherical particle suspensions using immersed boundary method. Comput. Fluids 2018, 166, 286–294. [Google Scholar] [CrossRef]
- Puleo, S.; Pasta, S.; Scardulla, F.; D’Acquisto, L. Fluid-Solid Interaction Analysis for Developing In-Situ Strainand Flow Sensors for Prosthetic Valve Monitoring. Sensors 2024, 24, 5040. [Google Scholar] [CrossRef]
- Chen, L.; Yu, Y.; Hou, G. Sharp-interface immersed boundary lattice Boltzmann method with reduced spurious-pressure oscillations for moving boundaries. Phys. Rev. E 2013, 87, 053306. [Google Scholar] [CrossRef]
- Fringand, T.; Cheylan, I.; Lenoir, M.; Mace, L.; Favier, J. A stable and explicit fluid–structure interaction solver based on lattice-Boltzmann and immersed boundary methods. Comput. Methods Appl. Mech. Eng. 2024, 421, 116777. [Google Scholar] [CrossRef]
- Ginzburg, I.; Verhaeghe, F.; d’Humières, D. Study of the simple hydrodynamic solutions with the two-relaxation-times Lattice Boltzmann scheme. Commun. Comput. Phys. 2008, 3, 519–581. [Google Scholar]
- Ginzburg, I.; Klein, P.; Reinel-Bitzer, D.; Steiner, K.; Wiegman, A. Annual Report 2000; Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (ITWM): Kaiserslautern, Germany, 2000; pp. 42–51. [Google Scholar]
- Marson, F.; Thorimbert, Y.; Chopard, B.; Ginzburg, I.; Latt, J. Enhanced single-node Lattice Boltzmann boundary condition for fluid flows. Phys. Rev. E. 2021, 103, 053308. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, Y.; Lu, J.; Hou, G. A comparative study of lattice Boltzmann methods using bounce-back schemes and immersed boundary ones for flow acoustic problems. Int. J. Numer. Meth. Fluids 2014, 74, 439–467. [Google Scholar] [CrossRef]
- Tao, S.; Hu, J.; Guo, Z. An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows. Comput. Fluids 2016, 133, 1–14. [Google Scholar] [CrossRef]
- Talon, L.; Bauer, D.; Gland, N.; Youssef, S.; Auradou, H.; Ginzburg, I. Assessment of the two relaxation time Lattice-Boltzmann scheme to simulate Stokes flow in porous media. Water Resour. Res. 2012, 48, W04526. [Google Scholar]
- Ginzburg, I. Multiple anisotropic collisions for advection–diffusion Lattice Boltzmann schemes. Adv. Water Res. 2013, 51, 381–404. [Google Scholar] [CrossRef]
- Ginzbourg, I.; Adler, P.M. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. Phys. II France 1994, 4, 191–214. [Google Scholar] [CrossRef]
- Bouzidi, M.; Firdaouss, M.; Lallemand, P. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 2001, 13, 3452–3459. [Google Scholar] [CrossRef]
- Yu, D.; Mei, R.; Luo, L.-S.; Shyy, W. Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 2003, 39, 329. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, J.; Yong, W.-A. Boundary conditions for kinetic theory based models I: Lattice Boltzmann models. SIAM J. Multisc. Model. Simul. 2019, 17, 854–872. [Google Scholar] [CrossRef]
- El Omari, K.; Younes, E.; Burghelea, T.; Castelain, C.; Moguen, Y.; Le Guer, Y. Active chaotic mixing in a channel with rotating arc-walls. Phys. Rev. Fluids 2022, 6, 024502. [Google Scholar] [CrossRef]
- Aharonov, E.; Rothman, D.H. Non-Newtonian flow (through porous media): A Lattice-Boltzmann method. Geophsy. Res. Lett. 1993, 20, 679–682. [Google Scholar] [CrossRef]
- Giraud, L.; d’Humières, D.; Lallemand, P. A lattice Boltzmann model for Jeffreys viscoelastic fluid. EPL (Europhys. Lett.) 1998, 42, 625. [Google Scholar] [CrossRef]
- Duque-Daza, C.; Alexiadis, A. A Simplified Framework for Modelling Viscoelastic Fluids in Discrete Multiphysics. Chem. Eng. 2021, 5, 61. [Google Scholar] [CrossRef]
- Ginzburg, I.; Steiner, K. A free-surface Lattice Boltzmann method for modelling the filling of expanding cavities by Bingham Fluids. Philos. Trans. R. Soc. Lond. A 2002, 360, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Talon, L.; Bauer, D. On the determination of a generalized Darcy equation for yield-stress fluid in porous media using a Lattice-Boltzmann TRT scheme. Eur. Phys. J. E 2013, 36, 139. [Google Scholar] [CrossRef] [PubMed]
- Thibaud, C.; Laurent, T. Generalization of Darcy’s law for Bingham fluids in porous media: From flow-field statistics to the flow-rate regimes. Phys. Rev. E 2015, 91, 023011. [Google Scholar]
- Ferrari, M.A.; Franco, A.T. Exploring the periodic behavior of the lid-driven cavity flow filled with a Bingham fluid. J. Non-Newtonian Fluid Mech. 2023, 36, 105030. [Google Scholar] [CrossRef]
- Bresolin, C.S.; Fiorot, G. On the stability and accuracy of TRT Lattice-Boltzmann method for non-Newtonian Ostwald-de Waele fluid flows. Comput. Fluids 2024, 282, 106388. [Google Scholar] [CrossRef]
- Boyd, J.; Buick, J.M.; Green, S. Analysis of the Casson and Carreau-Yasuda Non-Newtonian Blood Models in Steady and Oscillatory Flows Using the Lattice Boltzmann Method. Phys. Fluids 2007, 19, 093103. [Google Scholar] [CrossRef]
- Xie, C.; Balhoff, M.T. Lattice Boltzmann modeling of the apparent viscosity of thinning-elastic fluids in porous media. Transp. Porous Media 2021, 137, 63–86. [Google Scholar] [CrossRef]
- Batôt, G.; Talon, L.; Peysson, Y.; Fleury, M.; Bauer, D. Analytical and numerical investigation of the advective and dispersive transport in Herschel–Bulkley fluids by means of a Lattice–Boltzmann Two-Relaxation-Time scheme. Chem. Eng. Sci. 2016, 141, 271–281. [Google Scholar] [CrossRef]
- Patarin, J.; Bleses, D.; Magnin, A.; Guerin, S.; Malbert, C.-H. Rheological characterization of gastric juices from bread with different amylose/amylopectin ratios. Food Digest. Res. Curr. Opin. 2015, 6, 2–9. [Google Scholar] [CrossRef]
- Murayama, T.; Yoshino, M.; Hirata, T. Three-Dimensional Lattice Boltzmann Simulation of Two-Phase Flow Containing a Deformable Body with a Viscoelastic Membrane. Commun. Comput. Phys. 2011, 9, 1397–1413. [Google Scholar] [CrossRef]
- Murthy, J.S.N.; Kolluru, P.K.; Kumaran, V.; Ansumali, S. Lattice Boltzmann Method for Wave Propagation in Elastic Solids. Comm. Comput. Phys. 2017, 23, 1223–1240. [Google Scholar]
- Maquart, T.; Noël, R.; Courbebaisse, G.; Navarro, L. Towards a Lattice Boltzmann Method for Solids—Application to Static Equilibrium of Isotropic Materials. Appl. Sci. 2022, 12, 4627. [Google Scholar] [CrossRef]
- Boolakee, O.; Geier, M.; De Lorenzis, L. Dirichlet and Neumann boundary conditions for a lattice Boltzmann scheme for linear elastic solids on arbitrary domains. Comput. Methods Appl. Mech. Eng. 2023, 415, 116225. [Google Scholar] [CrossRef]
- Müller, H.; Panov, J.; Müller, R. Improvement of the stability with a TRT-collision scheme in a Lattice Boltzmann method for elastic solids. Proc. Appl. Math. Mech (PAMM) 2024. [Google Scholar] [CrossRef]
- Ginzburg, I.; Steiner, K. Lattice Boltzmann model for free-surface flow and its application to filling process in casting. J. Comp. Phys. 2003, 185, 61–99. [Google Scholar] [CrossRef]
Motility | Travel Speed | ||||||||
---|---|---|---|---|---|---|---|---|---|
MOT-I | SLOW | [68] | 5 | 0 | 5 | 0 | 15 | 25 | 65 |
FAST | [68] | 0 | 0 | ||||||
VMAX | 1 | 0 | 1 | 0 | 3 | 5 | 13 | ||
MOT-II | SLOW | 0 | 5 | 5 | 35 | 75 | |||
FAST | 0 | ||||||||
VMAX | , Figure 5 [9] | 0 | 1 | 1 | 7 | 15 |
MRI [68] | ||||||
---|---|---|---|---|---|---|
: low fluid volume of 60%, | ||||||
Figure 7 [68] | 13 | |||||
Figure 7 [68] | 12 | |||||
: high fluid volume of 80%, | ||||||
Figure 9 [68] | 10 | |||||
Figure 9 [68] | 15 | |||||
: low fluid volume of 60%, | ||||||
Figure 10 [68] | ||||||
Figure 10 [68] | ||||||
: high fluid volume of 80%, | ||||||
Figure 11 [68] | ||||||
Figure 11 [68] |
MRI | MRI [68] | |||||||
---|---|---|---|---|---|---|---|---|
: low fluid volume of 60%, , , | ||||||||
Figure 7 [68] | 1 | |||||||
Figure 7 [68] | 5 | |||||||
: low fluid volume of 60%, , , | ||||||||
Figure 10 [68] | 4 | |||||||
Figure 10 [68] | 5 | |||||||
: high fluid volume of 80%, , , | ||||||||
Figure 9 [68] | 3 | 0 | ||||||
Figure 9 [68] | 2 | |||||||
: high fluid volume of 80%, , , | ||||||||
Figure 11 [68] | 3 | |||||||
Figure 11 [68] |
OCL-Case | Construct | |||||
---|---|---|---|---|---|---|
is fixed, from [68] | ||||||
−1+ | the “P” tube follows Figure S1 from [9] | |||||
is fixed, from [68] | ||||||
is fixed, from the | ||||||
0 | is larger than in Figure 5 from [9], from [68] | |||||
0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ginzburg, I. The Lattice Boltzmann Method with Deformable Boundary for Colonic Flow Due to Segmental Circular Contractions. Fluids 2025, 10, 22. https://doi.org/10.3390/fluids10020022
Ginzburg I. The Lattice Boltzmann Method with Deformable Boundary for Colonic Flow Due to Segmental Circular Contractions. Fluids. 2025; 10(2):22. https://doi.org/10.3390/fluids10020022
Chicago/Turabian StyleGinzburg, Irina. 2025. "The Lattice Boltzmann Method with Deformable Boundary for Colonic Flow Due to Segmental Circular Contractions" Fluids 10, no. 2: 22. https://doi.org/10.3390/fluids10020022
APA StyleGinzburg, I. (2025). The Lattice Boltzmann Method with Deformable Boundary for Colonic Flow Due to Segmental Circular Contractions. Fluids, 10(2), 22. https://doi.org/10.3390/fluids10020022