Ventilative Cooling in a School Building: Evaluation of the Measured Performances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Building Description
2.1.1. Building and Use
2.1.2. Systems
2.1.3. Ventilative Cooling System
2.1.4. Control Strategy
- Room temperature exceeds both the heating set point (=22 °C) and the external temperature +2 °C
- Maximum room temperature of the previous day exceeds 23 °C
- External temperature is higher than 12 °C
- Internal relative humidity is smaller than 70%
- There is no rainfall and the wind velocity on site is smaller than 10 m/s
2.2. Measurement Setup
2.2.1. Airflow Rate and Room Air Temperature Profile
2.2.2. Indoor Climate and Operation of Ventilative Cooling
3. Results and Discussion
3.1. Airflow Rate
3.2. Room Air Temperature Profile
3.3. Operation of Ventilative Cooling
3.4. Thermal Comfort
4. Conclusions and Lessons Learned
Author Contributions
Funding
Conflicts of Interest
References
- EPBD. The Revised Energy Performance of Buildings Directive (EU) 2018/844. Available online: https://eur-lex.europa.eu/eli/dir/2018/844/oj (accessed on 29 June 2018).
- EPBD. Directive 2010/31/EU on the Energy Performance of Buildings (Recast). Available online: https://eur-lex.europa.eu/eli/dir/2010/31/oj (accessed on 29 June 2018).
- Heiselberg, P. Ventilative Cooling Design Guide, IEA EBC Annex 62; Aalborg University: Aalborg, Denmark, 2018. [Google Scholar]
- IEA EBC Annex 62 Ventilative Cooling|Venticool. Available online: http://venticool.eu/iea-ecbcs-annex-62-ventilative-cooling/ (accessed on 22 August 2018).
- Santamouris, M.; Kolokotsa, D. Passive cooling dissipation techniques for buildings and other structures: The state of the art. Energy Build. 2013, 57, 74–94. [Google Scholar] [CrossRef]
- Geros, V.; Santamouris, M.; Karatasou, S.; Tsangrassoulis, A.; Papanikolaou, N. On the cooling potential of night ventilation techniques in the urban environment. Energy Build. 2005, 37, 243–257. [Google Scholar] [CrossRef]
- Givoni, B. Passive and Low Energy Cooling of Buildings; Van Nostrand Reinhold: New York, NY, USA, 1994. [Google Scholar]
- Blondeau, P.; Sperandio, M.; Allard, F. Night ventilation for building cooling in summer. Sol. Energy 1997, 61, 327–335. [Google Scholar] [CrossRef]
- Pfafferott, J.; Herkel, S.; Jäschke, M. Design of passive cooling by night ventilation: Evaluation of a parametric model and building simulation with measurements. Energy Build. 2003, 35, 1129–1143. [Google Scholar] [CrossRef]
- Kubota, T.; Chyee, D.T.H.; Ahmad, S. The effects of night ventilation technique on indoor thermal environment for residential buildings in hot-humid climate of Malaysia. Energy Build. 2009, 41, 829–839. [Google Scholar] [CrossRef]
- Artmann, N.; Manz, H.; Heiselberg, P. Climatic potential for passive cooling of buildings by night-time ventilation in Europe. Appl. Energy 2007, 84, 187–201. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Kwon, O.; Choi, A.; Jeong, J. Energy conservation potential of an indirect and direct evaporative cooling assisted 100% outdoor air system. Build. Serv. Eng. Res. Technol. 2011, 32, 345–360. [Google Scholar] [CrossRef]
- Joudi, K.A.; Mehdi, S.M. Application of indirect evaporative cooling to variable domestic cooling load. Energy Convers. Manag. 2000, 41, 1931–1951. [Google Scholar] [CrossRef]
- Costelloe, B.; Finn, D. Thermal effectiveness characteristics of low approach indirect evaporative cooling systems in buildings. Energy Build. 2007, 39, 1235–1243. [Google Scholar] [CrossRef] [Green Version]
- Kolokotroni, M.; Heiselberg, P. Ventilative Cooling: State-of-the-Art Review; Aalborg University: Aalborg, Denmark, 2015. [Google Scholar]
- Williamson, T.; Erell, E. The Implications for Building Ventilation of the Spatial and Temporal Variability of Air Temperature in the Urban Canopy Layer. Int. J. Vent. 2008, 7, 23–35. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Giannitsaris, I.; Watkins, R. The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Sol. Energy 2005, 80, 383–392. [Google Scholar] [CrossRef]
- Ghiaus, C.; Allard, F.; Santamouris, M.; Georgakis, C.; Nicol, F. Urban environment influence on natural ventilation potential. Build. Environ. 2006, 41, 395–406. [Google Scholar] [CrossRef]
- Artmann, N.; Gyalistras, D.; Manz, H.; Heiselberg, P. Impact of climate warming on passive night cooling potential. Build. Res. Inf. 2008, 36, 111–128. [Google Scholar] [CrossRef]
- O’Sullivan, P.; O’Donnovan, A. Ventilative Cooling Case Studies, IEA EBC Annex 62; Aalborg University: Aalborg, Denmark, 2018. [Google Scholar]
- EN ISO 13790. Energy Performance of Buildings—Calculation of Energy Use for Space Heating and Cooling; CEN: Brussels, Belgium, 2008. [Google Scholar]
- Breesch, H.; Wauman, B.; Klein, R.; Versele, A. Design of a new nZEB test school building. REHVA J. 2016, 53, 17–20. [Google Scholar]
- Flemish Government Decree of 7 December 2007—Decree Concerning Energy Performances in School Buildings 2007. Available online: http://www.ejustice.just.fgov.be/eli/decreet/2007/12/07/2008035085/staatsblad (accessed on 21 September 2018).
- EN 15251. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; CEN: Brussels, Belgium, 2007. [Google Scholar]
- Irving, S.; Ford, B.; Etheridge, D. AM10 Natural Ventilation in Non Domestic Buildings; CIBSE: London, UK, 2005. [Google Scholar]
- Martin, A.; Fletcher, J. Night Cooling Strategies: Final Report 11621/4; BSRIA: Bracknell, UK, 1996. [Google Scholar]
- EN ISO 12569. Thermal Insulation in Buildings—Determination of Air Change in Buildings—Tracer Gas Dilution Method; CEN: Brussels, Belgium, 2001. [Google Scholar]
- Decrock, D.; Vanvalckenborgh, G. Evaluation of the Cooling Potential of Natural Night Ventilation in the Test Lecture Rooms (in Dutch); KU Leuven: Ghent, Belgium, 2017. [Google Scholar]
- Andriamamonjy, A.; Klein, R. A modular, open system for testing ventilation and cooling strategies in extremely low energy lecture rooms. In Proceedings of the 36th AIVC Conference, Madrid, Spain, 23–24 September 2015. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- 2017—KMI. Available online: https://www.meteo.be/meteo/view/nl/35424421-2017.html (accessed on 22 August 2018).
- Leenknegt, S. Numerical and Experimental Analysis of Passive Cooling through Night Ventilation; KU Leuven: Leuven, Belgium, 2013. [Google Scholar]
- Breesch, H.; Janssens, A. Performance evaluation of passive cooling in office buildings based on uncertainty and sensitivity analysis. Sol. Energy 2010, 84. [Google Scholar] [CrossRef]
- Van Der Linden, A.C.; Boerstra, A.C.; Raue, A.K.; Kurvers, S.R.; de Dear, R. Adaptive temperature limits: A new guideline in The Netherlands A new approach for the assesment of building performance with respect to thermal indoor climate. Energy Build. 2006, 38, 8–17. [Google Scholar] [CrossRef]
Property | Value | Unit |
---|---|---|
U-value Wall | 0.15 | W/m2 K |
U-value Roof | 0.14 | W/m2 K |
U-value Floor | 0.15 | W/m2 K |
U-value Window | 0.65 | W/m2 K |
g-value Window | 0.52 | (-) |
n50 1st floor | 0.41 | 1/h |
n50 2nd floor | 0.29 | 1/h |
Position A2 | Position B2 | Position C2 | Position D2 | Position E2 |
---|---|---|---|---|
0.8 m | 0.8 m | 0.5 m | 0.4 m | 0.4 m |
1.9 m | 1.9 m | 0.8 m | 0.5 m | 0.6 m |
2.1 m | 2.1 m | 1.3 m | 0.7 m | 0.7 m |
2.2 m | 2.2 m | 1.9 m | 1.3 m | 1.9 m |
2.3 m | 2.3 m | 2.3 m | 2.3 m | 2.3 m |
Parameter | Type Sensor | Accuracy |
---|---|---|
Air temperature | Omega PT100 | ±0.10 °C |
Air velocity | TSI 8475 | 3% of reading and 1% measurement range (0.05–2.50 m/s) |
Room temperature | SE CSTHR PT1000 | ±0.1 °C |
Supply temperature | SE CSTHK HX | ±0.4 °C |
Occupancy | Acurity Crosscan Camera | ±5% |
Outdoor temperature | Vaisala HMS82 | ±0.3 °C at 20 °C |
Wind velocity | Ultrasonic 2D Anemometer | ±0.1 m/s (0–5 m/s) |
Wind direction | Ultrasonic 2D Anemometer | ±1° |
Ventilation Mode | ACR (h-1) | Wind Velocity (m/s) | Wind Direction | Ti − Te (°C) |
---|---|---|---|---|
Cross ventilation | 4.18 ± 0.42 | 1.9 | WNW | 4.3 |
Cross ventilation | 3.76 ± 0.38 | 2.1 | ESE | 1.6 |
Cross ventilation | 3.04 ± 0.30 | 2.2 | ESE | 2.4 |
Single sided | 2.05 ± 0.21 | 2.3 | SSW | No data |
Single sided | 2.00 ± 0.20 | 2.68 | S | No data |
Single sided | 1.17 ± 0.12 | 1.45 | SSW | 5.1 |
Single sided | 1.56 ± 0.16 | 1.78 | S | 8.6 |
Ventilation Mode | Wind Velocity (m/s) | Wind Direction | ΔT (°C) |
---|---|---|---|
Cross ventilation | 0.78 | SW | 8.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breesch, H.; Merema, B.; Versele, A. Ventilative Cooling in a School Building: Evaluation of the Measured Performances. Fluids 2018, 3, 68. https://doi.org/10.3390/fluids3040068
Breesch H, Merema B, Versele A. Ventilative Cooling in a School Building: Evaluation of the Measured Performances. Fluids. 2018; 3(4):68. https://doi.org/10.3390/fluids3040068
Chicago/Turabian StyleBreesch, Hilde, Bart Merema, and Alexis Versele. 2018. "Ventilative Cooling in a School Building: Evaluation of the Measured Performances" Fluids 3, no. 4: 68. https://doi.org/10.3390/fluids3040068
APA StyleBreesch, H., Merema, B., & Versele, A. (2018). Ventilative Cooling in a School Building: Evaluation of the Measured Performances. Fluids, 3(4), 68. https://doi.org/10.3390/fluids3040068