Improving Ventilation Efficiency for a Highly Energy Efficient Indoor Swimming Pool Using CFD Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry and Ventilation of the Examined Indoor Swimming Pool
2.2. Boundary Conditions for Reference Case and Variants
2.3. CFD Model of the Swimming Hall
2.3.1. Meshing
2.3.2. Physical Model
2.3.3. Solver Settings and Convergence Criteria
2.4. CFD Model of the Swirl Diffusers
2.5. Evaluation metrics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Westerlund, L.; Dahl, J.; Johansson, L. A theoretical investigation of the heat demand for public baths. Energy 1996, 21, 731–737. [Google Scholar] [CrossRef]
- Schulz, T.; Pfluger, R.; Grove-Smith, J.; Kah, O.; Krick, B. Grundlagenuntersuchung der Bauphysikalischen und Technischen Bedingungen zur Umsetzung des Passivhauskonzepts im Öffentlichen Hallenbad; Bädergesellschaft Lünen mbH: Darmstadt, Germany, 2009. [Google Scholar]
- Zuccari, F.; Santiangeli, A.; Orecchini, F. Energy analysis of swimming pools for sports activities: Cost effective solutions for efficiency improvement. Energy Procedia 2017, 126, 123–130. [Google Scholar] [CrossRef]
- Kampel, W.; Aas, B.; Bruland, A. Energy-use in Norwegian swimming halls. Energy Build. 2013, 59, 181–186. [Google Scholar] [CrossRef]
- CIBSE. Energy Efficiency in Swimming Pools—For Centre Managers and Operators; CIBSE: London, UK, 1997; pp. 1–7. [Google Scholar]
- Sun, P.; Wu, J.Y.; Wang, R.Z.; Xu, Y.X. Analysis of indoor environmental conditions and heat pump energy supply systems in indoor swimming pools. Energy Build. 2011, 43, 1071–1080. [Google Scholar] [CrossRef]
- Ribeiro, E.M.A.; Jorge, H.M.M.; Quintela, D.A.A. An approach to optimised control of HVAC systems in indoor swimming pools. Int. J. Sustain. Energy 2016, 35, 378–395. [Google Scholar] [CrossRef]
- Johansson, L.; Westerlund, L. Energy savings in indoor swimming-pools: Comparisons betweendifferent heat-recovery systems. Appl. Energy 2001, 70, 281–303. [Google Scholar] [CrossRef]
- Gollowitzer, E.; Gressier, F.; Peper, S. Passivhaus-Hallenbad Bambados Monitoring; Passivhaus Institut: Darmstadt, Germany, 2015. [Google Scholar]
- Peper, S.; Grove-Smith, J. Monitoring Passivhaus-Hallenbad Lippe-Bad Lünen; Passivhaus Institut: Darmstadt, Germany, 2013. [Google Scholar]
- Ahrens, O.; Beckert, S.; Franke, T.; Grove-Smith, J.; Hitz, A.; Horstmann, W.; Kah, O.; Koch, G.; Krick, B.; Ostermann, U.; et al. Integrale Planung für die Realisierung eines öffentlichen Hallenbades mit Konzepten der Passivhaustechnologie; Passivhaus Institut: Darmstadt, Germany, 2011. [Google Scholar]
- Gollowitzer, E.; Grove-Smith, J.; Peper, S. Passivhaus-Konzept für Hallenbäder: Datenauswertung und Empfehlungen; Passivhaus Institut: Darmstadt, Germany, 2018. [Google Scholar]
- Grove-Smith, J.; Aydin, V.; Feist, W.; Schnieders, J.; Thomas, S. Standards and policies for very high energy efficiency in the urban building sector towards reaching the 1.5 C target. Environ. Sustain. 2018, 103–114. [Google Scholar] [CrossRef]
- Passive House Institute Criteria for the Passive House. EnerPHit and PHI Low Energy Building Standard; Passive House Institute Criteria for the Passive House: Darmstadt, Germany, 2016; pp. 1–27. [Google Scholar]
- Schnieders, J.; Feist, W.; Rongen, L. Passive Houses for different climate zones. Energy Build. 2015, 105, 71–87. [Google Scholar] [CrossRef]
- Gollowitzer, E.; Grove-Smith, J.; Peper, S.; Schulz, T. Passivhaus-Konzept für Hallenbäder: Leitfaden; Passivhaus Institut: Darmstadt, Germany, 2018. [Google Scholar]
- Zwiener, C.; Richardson, S.D.; De Marini, D.M.; Grummt, T.; Glauner, T.; Frimmel, F.H. Drowning in disinfection byproducts? Assessing swimming pool water. Environ. Sci. Technol. 2007, 41, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Al-hooshani, K.; Karanfil, T. Disinfection byproducts in swimming pool: Occurrences, implications and future needs. Water Res. 2014, 53, 68–109. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.C.; Weaver, W.A.; Zare Afifi, M.; Blatchley, T.N.; Cramer, J.S.; Chen, J.; Blatchley, I.R. Dynamics of gas-phase trichloramine (NCl3) in chlorinated, indoor swimming pool facilities. Indoor Air 2011, 21, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Bowen, A.B.; Kile, J.C.; Otto, C.; Kazerouni, N.; Austin, C.; Blount, B.C.; Wong, H.N.; Beach, M.J.; Fry, A.M. Outbreaks of short-incubation ocular and respiratory illness following exposure to indoor swimming pools. Environ. Health Perspect. 2007, 115, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Bougalt, V.; Turmel, J.; Boulet, L.; Levesque, B. The Respiratory Health of Swimmers. Sport. Med. 2009, 39, 295–312. [Google Scholar] [CrossRef] [PubMed]
- Weisel, C.P.; Richardson, S.D.; Nemery, B.; Aggazzotti, G.; Baraldi, E.; Blatchley, E.R.; Blount, B.C.; Carlsen, K.H.; Eggleston, P.A.; Frimmel, F.H.; et al. Childhood asthma and environmental exposures at swimming pools: State of the science and research recommendations. Environ. Health Perspect. 2009, 117, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.-S.; Cheng, S.-F.; Wang, G.-S.; Tsai, S.-W. Occupational exposures of airborne trichloramine at indoor swimming pools in Taipei. Sci. Total Environ. 2013, 461–462, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Limane, A.; Fellouah, H.; Galanis, N. Three-dimensional OpenFOAM simulation to evaluate the thermal comfort of occupants, indoor air quality and heat losses inside an indoor swimming pool. Energy Build. 2018, 167, 49–68. [Google Scholar] [CrossRef]
- Koper, P.; Lipska, B.; Michnol, W. Assessment of Thermal Comfort in an Indoor Swimming-Pool Making Use of the Numerical Prediction CFD. Archit. Civ. Eng. Environ. 2010, 3, 95–104. [Google Scholar]
- Palmowska, A.; Lipska, B. Research on improving thermal and humidity conditions in a ventilated ice rink arena using a validated CFD model. Int. J. Refrig. 2018, 86, 373–387. [Google Scholar] [CrossRef]
- Limane, A.; Fellouah, H.; Galanis, N. Simulation of airflow with heat and mass transfer in an indoor swimming pool by OpenFOAM. Int. J. Heat Mass Transf. 2017, 109, 862–878. [Google Scholar] [CrossRef]
- Palmowska, A.; Lipska, B. Experimental study and numerical prediction of thermal and humidity conditions in the ventilated ice rink arena. Build. Environ. 2016, 108, 171–182. [Google Scholar] [CrossRef]
- Ciuman, P.; Lipska, B. Experimental validation of the numerical model of air, heat and moisture flow in an indoor swimming pool. Build. Environ. 2018, 145, 1–13. [Google Scholar] [CrossRef]
- Wang, H.; Tang, X.; Huang, C.; Wang, H.; Tang, X.; Huang, C. Investigating ventilation system performance in large space building: A nozzle primary air supply with secondary airflow-relay system. Sci. Technol. Built Environ. 2017, 23, 296–306. [Google Scholar] [CrossRef]
- Blázquez, J.L.F.; Maestre, I.R.; Gallero, F.J.G.; Gómez, P.Á. A new practical CFD-based methodology to calculate the evaporation rate in indoor swimming pools. Energy Build. 2017, 149, 133–141. [Google Scholar] [CrossRef]
- Li, Z.; Heiselberg, P.K. CFD Simulations for Water Evaporation and Airflow Movement in Swimming Baths; Instituttet Bygningsteknik Aalborg Univ.: Aalborg, Denmark, 2005. [Google Scholar]
- Srebric, J.; Chen, Q. Simplified Numerical Models for Complex Air Supply Diffusers. HVAC&R Res. 2002, 8, 277–294. [Google Scholar] [Green Version]
- Li, Y.; Nielsen, P.V. Commemorating 20 years of Indoor Air: CFD and ventilation research. Indoor Air 2011, 21, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Trox Swirl Diffusers—Type VDL. Available online: https://www.trox.at/en/swirl-diffusers/type-vdl-a047654375f246da (accessed on 10 September 2018).
- VDI. Richtlinie VDI 2089—Blatt 1: Technische Gebäudeausrüstung von Schwimmbädern; VDI: Frankfurt am Main, Germany, 2010. [Google Scholar]
- Kaluza, J. Aktuelle Versuche: Luftführung abwärts! In Dr. Jentsch Schwimmbadseminare “Energieeffizienz”; Dr. Nüsken Chemie GmbH: Nuernberg, Germany, 2016. [Google Scholar]
- Rojas, G. Sanierung Telfer Bad: CFD-Simulationen zu möglichen Luftführungskonzepten; Internal report, Unit for Energy Efficient Buildings, University of Innsbruck: Innsbruck, Austria, 2013. [Google Scholar]
- www.CFD-Online.com Incompressible Flow. Available online: https://www.cfd-online.com/Wiki/Incompressible_flow (accessed on 7 November 2018).
- Fluent Inc. ANSYS Fluent 14.0 UDF Manual; Fluent Inc.: New York, NY, USA, 2011. [Google Scholar]
- ANSYS ANSYS Mesh Inflation Group. Available online: https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/wb_msh/ds_Inflation_Group.html (accessed on 12 September 2018).
- ANSYS ANSYS Fluent—Enhanced Wall Treatment. Available online: http://aerojet.engr.ucdavis.edu/fluenthelp/html/ug/node514.htm (accessed on 2 February 2015).
- ANSYS Natural Convection and Buoyancy-Driven Flows. Available online: https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/flu_ug/flu_ug_sec_hxfer_buoy.html (accessed on 16 September 2018).
- Convergenc Problems: High Rayleigh Number Flows. Available online: https://www.cfd-online.com/Forums/fluent/102996-questions-about-high-rayleigh-number-natural-convection-heat-transfer.html (accessed on 15 September 2018).
- Zhang, Z.; Zhang, W.; Zhai, Z.; Chen, Q. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2—Comparison with experimental data from. Hvac&R Res. 2007, 13, 871–887. [Google Scholar]
- Etheridge, D.; Sandberg, M. Definition of air-exchange efficiency. In Building Ventilation—Theory and Measurement; John Wiley & Sons: Hoboken, NJ, USA, 1996; p. 267. [Google Scholar]
- Novoselac, A. Comparison of Air Exchange Efficiency and Contaminant Removal Effectiveness as IAQ Indices. ASHRA 2003, 109, 1–11. [Google Scholar]
- Lim, E.; Ito, K.; Sandberg, M. New ventilation index for evaluating imperfect mixing conditions—Analysis of Net Escape Velocity based on RANS approach. Build. Environ. 2013, 61, 45–56. [Google Scholar] [CrossRef]
- Sandberg, M. What is ventilation efficiency? Build. Environ. 1981, 16, 123–135. [Google Scholar] [CrossRef]
ID | Variant Description | TSA | TRoom | XSA | Nr. | β | XEA | RHEA | ||
---|---|---|---|---|---|---|---|---|---|---|
[°C] | [°C] | [kg/kg] | [m3/h] | [-] | [m/h] | [kg/h] | [g/kg] | [-] | ||
As-Is variants | ||||||||||
- | Max. flow, VDI Guideline | 32.5 | 30 | 0.009 | 50,400 | 6 | 28 | 305.9 | 14.3 | 0.55 |
A | High flow rate, β = 28 m/h | 30.2 | 30 | 0.009 | 45,360 | 6 | 28 | 293.8 | 14.6 | 0.56 |
B | Low flow rate, β = 10 m/h | 40.0 | 30 | 0.004 | 7560 | 1 | 10 | 97.6 | 15.2 | 0.59 |
Alternative variants | ||||||||||
B1 | Vertically discharging | 40.0 | 30 | 0.004 | 7560 | 1 | 10 | 97.6 | 15.2 | 0.59 |
B2 | EA @ OW | 40.0 | 30 | 0.004 | 7560 | 1 | 10 | 97.6 | 15.2 | 0.59 |
B3 | EA @ OW + vert. discharging | 40.0 | 30 | 0.004 | 7560 | 1 | 10 | 97.6 | 15.2 | 0.59 |
B4 | EA @ pool edge | 40.0 | 30 | 0.004 | 7560 | 1 | 10 | 97.6 | 15.2 | 0.59 |
B7 | EA @ pool edge + vert. dis. | 40.0 | 30 | 0.004 | 7560 | 1 | 10 | 97.6 | 15.2 | 0.59 |
B5 | SA @ OW + EA @ IW (linear) | 40.0 | 30 | 0.004 | 7560 | n/a | 10 | 97.6 | 15.2 | 0.59 |
B6 | SA @ OW + EA @ IW (1×) | 40.0 | 30 | 0.004 | 7560 | n/a | 10 | 97.6 | 15.2 | 0.59 |
A5 | SA @ OW + EA @ IW (linear) | 30.3 | 30 | 0.009 | 50,400 | n/a | 28 | 305.9 | 14.3 | 0.55 |
A6 | SA @ OW + EA @ IW (1×) | 30.3 | 30 | 0.009 | 50,400 | n/a | 28 | 305.9 | 14.3 | 0.55 |
ID | Variant Description | Simulated Flow* | ACE Total Vol. | CRE Total Volume | CRE Water Surf. | |
---|---|---|---|---|---|---|
[m3/h] | [-] | [-] | [-] | [m/s] | ||
As-Is variants | ||||||
A | High flow rate, β = 28 m/h | 43,550 (−4%) | 0.37 | 0.75 | 0.58 | 0.21 |
B | Low flow rate, β = 10 m/h | 6850 (−9%) | 0.39 | 0.79 | 0.69 | 0.13 |
Alternative variant | ||||||
B1 | Vertically discharging | 7440 (−2%) | 0.45 | 0.92 | 0.75 | 0.09 |
B2 | EA @ OW | 6830 (−10%) | 0.5 | 1.00 | 0.81 | 0.08 |
B3 | EA @ OW + vert. discharging | 7430 (−2%) | 0.45 | 0.97 | 0.77 | 0.11 |
B4 | EA @ pool edge | 6920 (−8%) | 0.49 | 0.98 | 0.81 | 0.11 |
B7 | EA @ pool edge + vert. dis. | 7410 (−2%) | 0.48 | 0.96 | 0.78 | 0.10 |
B5 | SA @ OW + EA @ IW (linear) | 7560 (0%) | 0.48 | 0.98 | 0.84 | 0.19 |
B6 | SA @ OW + EA @ IW (1×) | 7560 (0%) | 0.47 | 0.98 | 0.84 | 0.20 |
A5 | SA @ OW + EA @ IW (linear) | 50,400 (0%) | 0.49 | 0.92 | 0.71 | 0.40 |
A6 | SA @ OW + EA @ IW (1×) | 50,400 (0%) | 0.49 | 0.92 | 0.71 | 0.40 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas, G.; Grove-Smith, J. Improving Ventilation Efficiency for a Highly Energy Efficient Indoor Swimming Pool Using CFD Simulations. Fluids 2018, 3, 92. https://doi.org/10.3390/fluids3040092
Rojas G, Grove-Smith J. Improving Ventilation Efficiency for a Highly Energy Efficient Indoor Swimming Pool Using CFD Simulations. Fluids. 2018; 3(4):92. https://doi.org/10.3390/fluids3040092
Chicago/Turabian StyleRojas, Gabriel, and Jessica Grove-Smith. 2018. "Improving Ventilation Efficiency for a Highly Energy Efficient Indoor Swimming Pool Using CFD Simulations" Fluids 3, no. 4: 92. https://doi.org/10.3390/fluids3040092
APA StyleRojas, G., & Grove-Smith, J. (2018). Improving Ventilation Efficiency for a Highly Energy Efficient Indoor Swimming Pool Using CFD Simulations. Fluids, 3(4), 92. https://doi.org/10.3390/fluids3040092