Energy Transfer in Incompressible Magnetohydrodynamics: The Filtered Approach
Abstract
:1. Introduction
2. Definitions and Notation
2.1. Commutation with Derivative
2.2. Cumulants
2.3. Norms and Inequalities
2.4. Estimates
3. Filtered Incompressible Magnetohydrodynamic Equation
4. Energy Budget
4.1. Large-Scale Budget Equations
4.1.1. Energy
4.1.2. Cross-Field
4.2. Small-Scale Energy Budget
4.2.1. Small-Scale Cross-Field
4.2.2. Small-Scale Energy
4.3. Ideal Turbulence
4.4. Ideal IMHD Equations
5. Primitive Variables
Transfer Terms
6. Estimating the Scale-to-Scale Energy Transfer
6.1. Structure Functions
6.2. Estimating the Scale-to-Scale Energy Flux
6.3. Onsager’s "Minimal Assumption" for Incompressible Magnetohydrodynamics
6.4. Scalings for Homogenous IMHD
7. Application to Observation
7.1. Analysis
7.2. Discussion of Analysis
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kolmogorov, A.N. Dissipation of energy in locally isotropic turbulence. Akademiia Nauk SSSR Doklady 1941, 32, 16. [Google Scholar] [CrossRef]
- De Karman, T.; Howarth, L. On the statistical theory of isotropic turbulence. Proc. R. Soc. Lon. Ser. A Math. Phys. Sci. 1938, 164. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Cr Acad. Sci. URSS 1941, 30, 301–305. [Google Scholar] [CrossRef]
- Frisch, U.; Kolmogorov, A.N. Turbulence: The Legacy of AN Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Germano, M. Turbulence: The filtering approach. J. Fluid Mech. 1992, 238, 325–336. [Google Scholar]
- Eyink, G.L. Review of the Onsager “Ideal Turbulence” Theory. arXiv 2018, arXiv:1803.02223. [Google Scholar]
- Eyink, G.L.; Sreenivasan, K.R. Onsager and the theory of hydrodynamic turbulence. Rev. Modern Phys. 2006, 78, 87. [Google Scholar] [CrossRef]
- Caflisch, R.E.; Klapper, I.; Steele, G. Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math. Phys. 1997, 184, 443–455. [Google Scholar] [CrossRef]
- Aluie, H. Coarse-grained incompressible magnetohydrodynamics: analyzing the turbulent cascades. New J. Phys. 2017, 19, 025008. [Google Scholar] [CrossRef]
- Coleman, P.J., Jr. Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 1968, 153, 371. [Google Scholar] [CrossRef]
- Bruno, R.; Carbone, V. The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2013, 10, 2. [Google Scholar] [CrossRef]
- Politano, H.; Pouquet, A. Dynamical length scales for turbulent magnetized flows. Geophys. Res. Lett. 1998, 25, 273–276. [Google Scholar] [CrossRef]
- Dobrowolny, M.; Mangeney, A.; Veltri, P. Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 1980, 45, 144–147. [Google Scholar] [CrossRef]
- Goldreich, P.; Sridhar, S. Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. Astrophys. J. 1995, 438, 763–775. [Google Scholar] [CrossRef]
- Boldyrev, S. On the spectrum of magnetohydrodynamic turbulence. Astrophys. J. Lett. 2005, 626, L37. [Google Scholar] [CrossRef]
- Lin, R.; Anderson, K.; Ashford, S.; Carlson, C.; Curtis, D.; Ergun, R.; Larson, D.; McFadden, J.; McCarthy, M.; Parks, G.; et al. A three-dimensional plasma and energetic particle investigation for the Wind spacecraft. Space Sci. Rev. 1995, 71, 125–153. [Google Scholar] [CrossRef]
- Lepping, R.; Acũna, M.; Burlaga, L.; Farrell, W.; Slavin, J.; Schatten, K.; Mariani, F.; Ness, N.; Neubauer, F.; Whang, Y.; et al. The WIND magnetic field investigation. Space Sci. Revi. 1995, 71, 207–229. [Google Scholar]
- Bruno, R.; d’Amicis, R.; Bavassano, B.; Carbone, V.; Sorriso-Valvo, L. Magnetically dominated structures as an important component of the solar wind turbulence. Ann. Geophys. 2007, 25, 1913–1927. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coburn, J.T.; Sorriso-Valvo, L. Energy Transfer in Incompressible Magnetohydrodynamics: The Filtered Approach. Fluids 2019, 4, 163. https://doi.org/10.3390/fluids4030163
Coburn JT, Sorriso-Valvo L. Energy Transfer in Incompressible Magnetohydrodynamics: The Filtered Approach. Fluids. 2019; 4(3):163. https://doi.org/10.3390/fluids4030163
Chicago/Turabian StyleCoburn, Jesse T., and Luca Sorriso-Valvo. 2019. "Energy Transfer in Incompressible Magnetohydrodynamics: The Filtered Approach" Fluids 4, no. 3: 163. https://doi.org/10.3390/fluids4030163
APA StyleCoburn, J. T., & Sorriso-Valvo, L. (2019). Energy Transfer in Incompressible Magnetohydrodynamics: The Filtered Approach. Fluids, 4(3), 163. https://doi.org/10.3390/fluids4030163