An Experimental Study on Human Milk Rheology: Behavior Changes from External Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment and Milk Collection
2.2. Experimental Methods
2.3. Uncertainty Analysis
3. Results
3.1. Milk Content
3.2. Flow Behavior of Human Milk
3.3. Effect of Temperature on Human Milk Density and Viscosity
3.4. Changes in Density and Viscosity Associated with Intra-Individual Human Milk Variations
3.5. The Effect of Storage & Aging on Human Milk Density and Viscosity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Tube Inner Diameter (mm) | Infant Weight (g) | Feed Volume (mL kg day) | (s) |
---|---|---|---|
0.5 | 1000 | 100 | 565.9 |
0.5 | 1000 | 200 | 1131.8 |
0.5 | 1500 | 100 | 848.8 |
0.5 | 1500 | 200 | 1697.7 |
3.0 | 1000 | 100 | 2.6 |
3.0 | 1000 | 200 | 5.2 |
3.0 | 1500 | 100 | 3.9 |
3.0 | 1500 | 200 | 7.9 |
References
- Eidelman, A.I.; Schanler, R.J.; Johnston, M.; Landers, S.; Noble, L.; Szucs, K.; Viehmann, L. Breastfeeding and the Use of Human Milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Infant and Young Child Feeding: Model Chapter for Textbooks For Medical Students and Allied Health Professionals; World Health Association: Geneva, Switzerland, 2009. [Google Scholar]
- Vieira, A.A.; Soares, F.V.M.; Pimenta, H.P.; Abranches, A.D.; Moreira, M.E.L. Analysis of the influence of pasteurization, freezing/thawing, and offer processes on human milk’s macronutrient concentrations. Early Hum. Dev. 2011, 87, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Stocks, R.; Davies, D.; Allen, F.; Sewell, D. Loss of Breast Milk Nutrients during Tube Feeding. Arch. Dis. Child. 1985, 60, 164–166. [Google Scholar] [CrossRef] [Green Version]
- Jarjour, J.; Juarez, A.; Kocak, D.; Liu, N.; Tabata, M.; Hawthorne, K.; Ramos, R.; Abrams, S. A novel approach to improving fat delivery in neonatal enteral feeding. Nutrients 2015, 7, 5051–5064. [Google Scholar] [CrossRef] [PubMed]
- Bateman, G.; Sharp, P. A Study of the Apparent Viscosity of Milk as influenced by some Physical Factors. J. Agric. Res. 1928, 36, 647–674. [Google Scholar]
- Bienvenue, A.; Jiménez-Flores, R.; Singh, H. Rheological properties of concentrated skim milk: Importance of soluble minerals in the changes in viscosity during storage. J. Dairy Sci. 2003, 86, 3813–3821. [Google Scholar] [CrossRef] [Green Version]
- Trinh, B.; Haisman, D.; Trinh, K.T. Rheological characterisation of age thickening with special reference to milk concentrates. J. Dairy Res. 2007, 74, 106–115. [Google Scholar] [CrossRef]
- Vélez-Ruiz, J.; Barbosa-Cánovas, G. Rheological properties of concentrated milk as a function of concentration, temperature and storage time. J. Food Eng. 1998, 35, 177–190. [Google Scholar] [CrossRef]
- Snoeren, T.; Damman, A.; Klok, H. The Viscosity of Skim-Milk Concentrate; Zuivelzicht: Ede, The Netherlands, 1981. [Google Scholar]
- Jebson, R.S.; Chen, H. Performances of falling film evaporators on whole milk and a comparison with performance on skim milk. J. Dairy Res. 1997, 64, 57–67. [Google Scholar] [CrossRef]
- Bakshi, A.; Smith, D. Effect of fat content and temperature on viscosity in relation to pumping requirements of fluid milk products. J. Dairy Sci. 1984, 67, 1157–1160. [Google Scholar] [CrossRef]
- Phipps, L. The interrelationship of the viscosity, fat content and temperature of cream between 40 and 80 °C. J. Dairy Res. 1969, 36, 417–426. [Google Scholar] [CrossRef]
- Whitaker, R.; Sherman, J.; Sharp, P.F. Effect of temperature on the viscosity of skimmilk. J. Dairy Sci. 1927, 10, 361–371. [Google Scholar] [CrossRef]
- Magee, H.E.; Harvey, D. Studies on the Effect of Heat on Milk: Some Physico-Chemical Changes induced in Milk by Heat. Biochem. J. 1926, 20, 873. [Google Scholar]
- Evenson, O.L.; Ferris, L.W. The viscosity of natural and remade milk. J. Dairy Sci. 1924, 7, 174–188. [Google Scholar] [CrossRef]
- Zhao, D.B.; Bai, Y.H.; Niu, Y.W. Composition and characteristics of Chinese Bactrian camel milk. Small Ruminant Res. 2015, 127, 58–67. [Google Scholar] [CrossRef]
- Macy, I.G.; Kelly, H.J.; Sloan, R.E. The Composition of Milks. A Compilation of the Comparative Composition and Properties of Human, Cow, and Goat Milk, Colostrum, and Transitional Milk; National Research Council: Washington, DC, USA, 1953. [Google Scholar]
- Blair, G.W.S. The determination of the viscosity of human milks and the prenatal secretions. Biochem. J. 1941, 35, 267. [Google Scholar] [CrossRef] [Green Version]
- Waller, H.; Aschaffenburg, R.; Grant, M.W. The viscosity, protein distribution, and ’gold number’ of the antenatal and postnatal secretions of the human mammary gland. Biochem. J. 1941, 35, 272. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, M.B.d.M.; de Almeida, J.A.G.; Moreira, M.E.L.; Novak, F.R. Adequacy of human milk viscosity to respond to infants with dysphagia: Experimental study. J. Appl. Oral Sci. 2011, 19, 554–559. [Google Scholar] [CrossRef] [Green Version]
- Fondaco, D.; AlHasawi, F.; Lan, Y.; Ben-Elazar, S.; Connolly, K.; Rogers, M. Biophysical Aspects of Lipid Digestion in Human Breast Milk and Similac™ Infant Formulas. Food Biophys. 2015, 10, 282–291. [Google Scholar] [CrossRef]
- Frazier, J.; Chestnut, A.H.; Jackson, A.; Barbon, C.E.; Steele, C.M.; Pickler, L. Understanding the viscosity of liquids used in infant dysphagia management. Dysphagia 2016, 31, 672–679. [Google Scholar] [CrossRef]
- Laogun, A. Effect of temperature on the RF dielectric properties of human breast milk. Phys. Med. Biol. 1986, 31, 893. [Google Scholar] [CrossRef]
- Laogun, A. Dielectric properties of mammalian breast milk at radiofrequencies. Phys. Med. Biol. 1986, 31, 555. [Google Scholar] [CrossRef]
- McDaniel, M.; Barker, E.; Lederer, C. Sensory characterization of human milk. J. Dairy Sci. 1989, 72, 1149–1158. [Google Scholar] [CrossRef]
- Bransburg-Zabary, S.; Virozub, A.; Mimouni, F.B. Human milk warming temperatures using a simulation of currently available storage and warming methods. PLoS ONE 2015, 10, e0128806. [Google Scholar] [CrossRef] [Green Version]
- Dumm, M.; Hamms, M.; Sutton, J.; Ryan-Wenger, N. NICU breast milk warming practices and the physiological effects of breast milk feeding temperatures on preterm infants. Adv. Neonat. Care 2013, 13, 279–287. [Google Scholar] [CrossRef]
- Alatalo, D.; Hassanipour, F. An Experimental Study on Human Milk Viscosity. In Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, AZ, USA, 11–17 November 2016. [Google Scholar]
- Mezger, T.G. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, 4th ed.; Vincentz Network GmbH & Co. KG: Hanover, Germany, 2014. [Google Scholar]
- Cadwell, K.; Turner-Maffei, C. The Lactation Counselor Certificate Training Course Notebook, 2017–2018 ed.; Healthy Children Project, Inc.: East Sandwich, MA, USA, 2017. [Google Scholar]
- Fernandes, R.R.; Andrade, D.E.; Franco, A.T.; Negrão, C.O. The yielding and the linear-to-nonlinear viscoelastic transition of an elastoviscoplastic material. J. Rheol. 2017, 61, 893–903. [Google Scholar] [CrossRef]
- Kline, S.J.; McClintock, F.A. Describing Uncertainties in Single-Sample Experiments. Mech. Eng. 1953, 75, 3–8. [Google Scholar]
- McKennell, R. Cone-plate viscometer. Anal. Chem. 1956, 28, 1710–1714. [Google Scholar] [CrossRef]
- Neville, M.C.; Keller, R.P.; Seacat, J.; Casey, C.E.; Allen, J.C.; Archer, P. Studies on human lactation. I. Within-feed and between-breast variation in selected components of human milk. Am. J. Clin. Nutr. 1984, 40, 635–646. [Google Scholar] [CrossRef]
- Andreas, N.J.; Kampmann, B.; Le-Doare, K.M. Human breast milk: A review on its composition and bioactivity. Early Human Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef]
- Merrill, E.; Gilliland, E.; Cokelet, G.; Shin, H.; Britten, A.; Wells, R., Jr. Rheology of human blood, near and at zero flow: Effects of temperature and hematocrit level. Biophys. J. 1963, 3, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Mediwaththe, A.T.M. Impact of Heating and Shearing on Native Milk Proteins in Raw Milk. Ph.D. Thesis, Victoria University, Footscray, Australia, 2017. [Google Scholar]
- Elad, D.; Kozlovsky, P.; Blum, O.; Laine, A.F.; Po, M.J.; Botzer, E.; Dollberg, S.; Zelicovich, M.; Sira, L.B. Biomechanics of milk extraction during breast-feeding. Proc. Natl. Acad. Sci. USA 2014, 111, 5230–5235. [Google Scholar] [CrossRef] [Green Version]
- Mortazavi, S.N.; Geddes, D.; Hassanipour, F. Lactation in the Human Breast From a Fluid Dynamics Point of View. J. Biomech. Eng. 2017, 139, 011009. [Google Scholar] [CrossRef] [Green Version]
- Azarnoosh, J.; Hassanipour, F. Fluid-structure interaction modeling of lactating breast. J. Biomech. 2020, 103, 109640. [Google Scholar] [CrossRef]
- Arthur, P.; Hartmann, P.; Smith, M. Measurement of the milk intake of breast-fed infants. J. Pediatr. Gastr. Nutr. 1987, 6, 758–763. [Google Scholar] [CrossRef]
- Daly, S.; Owens, R.A.; Hartmann, P.E. The short-term synthesis and infant-regulated removal of milk in lactating women. Exp. Physiol. Transl. Integr. 1993, 78, 209–220. [Google Scholar] [CrossRef]
- Lucas, A.; Lucas, P.; Baum, J. Pattern of milk flow in breast-fed infants. Lancet 1979, 314, 57–58. [Google Scholar] [CrossRef]
- Lucas, A.; Gibbs, J.; Baum, J. The biology of human drip breast milk. Early Hum. Dev. 1978, 2, 351–361. [Google Scholar] [CrossRef]
- Mitoulas, L.R.; Kent, J.C.; Cox, D.B.; Owens, R.A.; Sherriff, J.L.; Hartmann, P.E. Variation in fat, lactose and protein in human milk over 24h and throughout the first year of lactation. Br. J. Nutr. 2002, 88, 29–37. [Google Scholar] [CrossRef]
- Mizuno, K.; Nishida, Y.; Taki, M.; Murase, M.; Mukai, Y.; Itabashi, K.; Debari, K.; Iiyama, A. Is increased fat content of hindmilk due to the size or the number of milk fat globules? Int. Breastfeed. J. 2009, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Ogechi, A.A.; William, O.; Fidelia, B.T. Hindmilk and weight gain in preterm very low-birthweight infants. Pediatr. Int. 2007, 49, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Czosnykowska-Łukacka, M.; Królak-Olejnik, B.; Orczyk-Pawiłowicz, M. Breast Milk Macronutrient Components in Prolonged Lactation. Nutrients 2018, 10, 1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saarela, T.; Kokkonen, J.; Koivisto, M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. 2005, 94, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Demmelmair, H.; Koletzko, B. Lipids in human milk. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Woolridge, M.; Fisher, C. Colic, “overfeeding”, and symptoms of lactose malabsorption in the breast-fed baby: A possible artifact of feed management? Lancet 1988, 332, 382–384. [Google Scholar] [CrossRef]
- Apostolidis, A.J.; Armstrong, M.J.; Beris, A.N. Modeling of human blood rheology in transient shear flows. J. Rheol. 2015, 59, 275–298. [Google Scholar] [CrossRef]
- Jensen, R.G. Lipids in human milk. Lipids 1999, 34, 1243–1271. [Google Scholar] [CrossRef]
- Jones, F. Best Practice for Expressing, Storing and Handling Human Milk in Hospitals, Homes and Child Care Settings, 4th ed.; Human Milk Banking Association of North America, Inc.: Fort Worth, TX, USA, 2019. [Google Scholar]
- Lucas, A.; Gibbs, J.; Lyster, R.; Baum, J. Creamatocrit: Simple clinical technique for estimating fat concentration and energy value of human milk. Br. Med. J. 1978, 1, 1018–1020. [Google Scholar] [CrossRef] [Green Version]
- Son, Y. Determination of shear viscosity and shear rate from pressure drop and flow rate relationship in a rectangular channel. Polymer 2007, 48, 632–637. [Google Scholar] [CrossRef]
- Schanler, R.J.; Shulman, R.J.; Lau, C.; Smith, E.; Heitkemper, M.M. Feeding strategies for premature infants: Randomized trial of gastrointestinal priming and tube-feeding method. Pediatrics 1999, 103, 434–439. [Google Scholar] [CrossRef]
Author | Regression Equation and Nomenclature |
---|---|
Snoeren et al. [10] |
|
Jebson and Chen [11] |
|
Phipps [13] |
|
Bakshi and Smith [12] |
|
Parameter | Test # 1 | Test # 2 |
---|---|---|
Temperature Range | 3–50 C | 36–41 C |
Tested Sample(s) | #1–6 * | #8 ** |
Total Data Points | 40 | 6 |
Measured At | Sample Equilibrium | |
Recording Frequency | Every C | |
Sample Volume | 1.3 mL |
Parameter | Shear Rate Sweep | Temperature Sweep | Shear Rate Loop | Amplitude Sweep | |||
---|---|---|---|---|---|---|---|
Test #1 | Test #2 | Test #1 | Test #2 | Test #3 | |||
Temperature(s) | 37 C | 0–50 C | 29–45 C | 36–43 C | 37 C | 37 C | |
Sample(s) | #1–6 *, 8 ** | #1–6 *, 8 ** | #1–6 *, 8 *** | #1–6 * | #7 ** | #8 *** | #2 *, 5 *, 6 * |
# Data Points | 100 | 40 | 51 | 33 | 8 | 400 | 25 |
Measured At | Linear Ramp 1–100 s | Linear Ramp 0.01–20 s | 50 s | 50 s | 50 s | 1–200–1 s | 0.01–1000% at = 5 rad s |
Point Density | 1 | 2 | 1 C 60 s | 1 C 30 s | 1 C 60 s | 1 | 6 decade |
Recording Frequency | Constant Every 2 s | Linear Ramp 10–1 s | Constant Every 60 s | Constant Every 30 s | Constant Every 60 s | Constant Every 1 s | Set By Device |
Volume | 0.29 mL | 0.29 mL | 0.29 mL | 0.29 mL | 0.29 mL | 0.29 mL | 4.0 mL |
Test Time | 440 s | 460 s | 55 min | 21 min | 12 min | 640 s | Varied |
Participant | Month of Lactation | Carbohydrates (g/100 mL) | Proteins (g/100 mL) | Fats (g/100 mL) |
---|---|---|---|---|
#1 | 9.0 | 7.01 | 0.80 | 4.11 |
#2 | 16.0 | 6.80 | 0.97 | 5.23 |
#3 | 12.5 | 6.91 | 0.90 | 4.67 |
#4 | 12.25 | 6.91 | 0.89 | 4.63 |
#5 | 3.5 | 7.18 | 0.66 | 3.23 |
#6 | 4.25 | 7.16 | 0.68 | 3.35 |
#7F | 8.0 | 7.04 | 0.78 | 3.17 |
#7H | 8.0 | 7.04 | 0.78 | 6.61 |
#8F | 1.0 | 7.26 | 0.60 | 2.25 |
#8H | 1.0 | 7.26 | 0.60 | 4.81 |
Sample | Density (g cm) | (%) | (mPa) | (mPa) | FTI |
---|---|---|---|---|---|
2R | 1.02432 | 1.47 | 8.428 | 22.37 | 2.65 |
2L | 1.02656 | 0.32 | 0.220 | 1.68 | 7.63 |
5R | 1.03002 | 1.00 | 0.891 | 2.00 | 2.24 |
5L | 1.02604 | 2.16 | 4.766 | 9.26 | 1.94 |
6R | 1.02210 | 1.47 | 68.433 | 95.30 | 1.39 |
6L | 1.02795 | 0.15 | 0.680 | 15.07 | 22.17 |
mean ± SD | 1.10 ± 0.76 | 13.903 ± 26.901 | 24.28 ± 35.68 | 6.34 ± 8.08 |
Participant | Right Breast | Left Breast | Difference |
---|---|---|---|
1 | 1.02443 | 1.01713 | 0.00730 |
2 | 1.02432 | 1.02656 | 0.00224 |
3 | 1.02583 | 1.02883 | 0.00300 |
4 | 1.02750 | 1.02761 | 0.00011 |
5 | 1.03002 | 1.02604 | 0.00398 |
6 | 1.02210 | 1.02795 | 0.00585 |
Mean ± SD | 0.00289 ± 0.00269 |
Sample | Initial (mPa s) | Final (mPa s) | Increase/Decrease (%) |
---|---|---|---|
Left Foremilk | 9.4136 | 9.2705 | −1.52 |
Right Foremilk | 9.3010 | 13.9690 | +50.19 |
Left Hindmilk | 21.6380 | 10.1380 | −53.15 |
Right Hindmilk | 12.8800 | 16.6060 | +28.93 |
Sample | Temperature (C) | Fresh (g cm) | Thawed (g cm) |
---|---|---|---|
1R | 26.4 | 0.970 | 1.029 |
1L | 24.8 | 0.964 | 1.022 |
2R | 25.8 | 0.967 | 1.028 |
2L | 26.7 | 0.964 | 1.030 |
4R | 26.0 | 0.972 | 1.031 |
4L | 27.0 | 0.969 | 1.031 |
5R | 24.8 | 0.952 | 1.034 |
5L | 25.4 | 0.962 | 1.030 |
6R | 26.2 | 0.968 | 1.026 |
6L | 26.0 | 0.952 | 1.032 |
Mean ± SD | 25.9 ± 0.74 | 0.964 ± 0.007 | 1.029 ± 0.003 |
Confidence Interval |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alatalo, D.; Hassanipour, F. An Experimental Study on Human Milk Rheology: Behavior Changes from External Factors. Fluids 2020, 5, 42. https://doi.org/10.3390/fluids5020042
Alatalo D, Hassanipour F. An Experimental Study on Human Milk Rheology: Behavior Changes from External Factors. Fluids. 2020; 5(2):42. https://doi.org/10.3390/fluids5020042
Chicago/Turabian StyleAlatalo, Diana, and Fatemeh Hassanipour. 2020. "An Experimental Study on Human Milk Rheology: Behavior Changes from External Factors" Fluids 5, no. 2: 42. https://doi.org/10.3390/fluids5020042
APA StyleAlatalo, D., & Hassanipour, F. (2020). An Experimental Study on Human Milk Rheology: Behavior Changes from External Factors. Fluids, 5(2), 42. https://doi.org/10.3390/fluids5020042