Fluid and Predator-Prey Interactions of Scyphomedusae Fed Calanoid Copepods
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Behrends, G.; Schneider, G. Impact of Aurelia aurita medusae (Cnidaria, Scyphozoa) on the standing stock and community composition of mesozooplankton in the Kiel Bight (western Baltic Sea). Mar. Ecol. Prog. Ser. 1995, 127, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Graham, W.M.; Gelcich, S.; Robinson, K.L.; Duarte, C.M.; Brotz, L.; Purcell, J.E.; Madin, L.P.; Mianzan, H.; Sutherland, K.R.; Uye, S.I.; et al. Linking human well-being and jellyfish: Ecosystem services, impacts, and societal responses. Front. Ecol. Environ. 2014, 12, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Bezio, N.; Costello, J.H.; Perry, E.; Colin, S.P. Effects of capture surface morphology on feeding success of scyphomedusae: A comparative study. Mar. Ecol. Prog. Ser. 2018, 596, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Katija, K.; Beaulieu, W.T.W.; Regula, C.; Colin, S.S.P.; Costello, J.H.J.; Dabiri, J.O. Quantification of flows generated by the hydromedusa Aequorea victoria: A Lagrangian coherent structure analysis. Mar. Ecol. Prog. Ser. 2011, 435, 111–123. [Google Scholar] [CrossRef]
- Dabiri, J.O.J.O.; Gharib, M.; Colin, S.P.; Costello, J.H. Vortex motion in the ocean: In situ visualization of jellyfish swimming and feeding flows. Phys. Fluids 2005, 17, 091108. [Google Scholar] [CrossRef] [Green Version]
- Gemmell, B.J.; Troolin, D.R.; Costello, J.H.; Colin, S.P.; Satterlie, R.A. Control of vortex rings for manoeuvrability. J. R. Soc. Interface 2015, 12, 20150389. [Google Scholar] [CrossRef]
- Colin, S.P.S.P.; Costello, J.H.; Dabiri, J.O.J.O.; Villanueva, A.; Blottman, J.B.J.B.; Gemmell, B.J.B.J.; Priya, S. Biomimetic and live medusae reveal the mechanistic advantages of a flexible bell margin. PLoS ONE 2012, 7, e48909. [Google Scholar] [CrossRef] [Green Version]
- Gemmell, B.J.B.J.; Costello, J.H.; Colin, S.P.; Stewart, C.J.; Dabiri, J.O.; Tafti, D.; Priya, S. Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans. Proc. Natl. Acad. Sci. USA 2013, 110, 17904–17909. [Google Scholar] [CrossRef] [Green Version]
- Dabiri, J.O.; Colin, S.P.; Costello, J.H.; Gharib, M. Flow patterns generated by oblate medusan jellyfish: Field measurements and laboratory analyses. J. Exp. Biol. 2005, 208, 1257–1265. [Google Scholar] [CrossRef] [Green Version]
- Costello, J.H.; Colin, S.P.S.P.; Dabiri, J.O.J.O. Medusan morphospace: Phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebr. Biol. 2008, 127, 265–290. [Google Scholar] [CrossRef] [Green Version]
- Graham, W.M.; Kroutil, R.M. Size-based Prey Selectivity and Dietary Shifts in the Jellyfish, Aurelia aurita. J. Plankton Res. 2001, 23, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Larson, J. Diet, Prey Selection and Daily Ration of Stomolophus a Filter-feeding Scyphomedusa from the NE Gulf of Mexico. Estuar. Coast. Shelf Sci. 1991, 32, 511–525. [Google Scholar] [CrossRef]
- Peach, M.B.; Pitt, K.A. Morphology of the nematocysts of the medusae of two scyphozoans, Catostylus mosaicus and Phyllorhiza punctata (Rhizostomeae): Implications for capture of prey. Invertebr. Biol. 2007, 124, 98–108. [Google Scholar] [CrossRef]
- Álvarez-Tello, F.J.; López-Martínez, J.; Lluch-Cota, D.B. Trophic spectrum and feeding pattern of cannonball jellyfish Stomolophus meleagris (Agassiz, 1862) from central Gulf of California. J. Mar. Biol. Assoc. UK 2016, 96, 1217–1227. [Google Scholar] [CrossRef]
- Costello, J.H.; Colin, S.P. Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Mar. Biol. 1994, 121, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Suchman, C.L.; Sullivan, B.K. Vulnerability of the copepod Acartia tonsa to predation by the scyphomedusa Chrysaora quinquecirrha: Effect of prey size and behavior. Mar. Boil. 1998, 132, 237–245. [Google Scholar] [CrossRef]
- Kiorboe, T.; Saiz, E.; Visser, A.W. Hydrodynamic signal perception in the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 1999, 179, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Kiorboe, T.; Visser, A.W. Predator and prey perception in copepods due to hydromechanical signals. Mar. Ecol. Prog. Ser. 1999, 179, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Colin, S.P.; MacPherson, R.; Gemmell, B.; Costello, J.H.; Sutherland, K.; Jaspers, C. Elevating the predatory effect: Sensory-scanning foraging strategy by the lobate ctenophore Mnemiopsis leidyi. Limnol. Oceanogr. 2015, 60, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Corrales-Ugalde, M.; Colin, S.P.; Sutherland, K.R. Nematocyst distribution corresponds to prey capture location in hydromedusae with different predation modes. Mar. Ecol. Prog. Ser. 2017, 568, 101–110. [Google Scholar] [CrossRef]
- Olesen, N.J. Clearance potential of jellyfish Aurelia aurita, and predation impact on zooplankton in a shallow cove. Mar. Ecol. Prog. Ser. 1995, 124, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Olesen, N.; Frandsen, K.; Riisgård, H.U. Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Mar. Ecol. Prog. Ser. 1994, 105, 9–18. [Google Scholar] [CrossRef]
- Bay, C.; Purcell, J.E. Effects of predation by the scyphomedusan Chrysaora quinquecirrha on zooplankton. Mar. Ecol. Prog. Ser. 1992, 87, 65–76. [Google Scholar]
- Graham, E.S.; Tuzzolino, D.M.; Burrell, R.B.; Breitburg, D.L. Interannual Variation in Gelatinous Zooplankton and Their Prey in the Rhode River, Maryland. Smithson. Contrib. Mar. Sci. 2009, 38, 369–377. [Google Scholar]
- Riisgård, H.U.; Madsen, C.V. Clearance rates of ephyrae and small medusae of the common jellyfish Aurelia aurita offered different types of prey. J. Sea Res. 2011, 65, 51–57. [Google Scholar] [CrossRef]
- Colin, S.P.; Costello, J.H.; Hansson, L.J.; Titelman, J.; Dabiri, J.O. Stealth predation and the predatory success of the invasive ctenophore Mnemiopsis leidyi. Proc. Natl. Acad. Sci. USA 2010, 107, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Waggett, R.J.; Costello, J.H. Capture mechanisms used by the lobate ctenophore, Mnemiopsis leidyi, preying on the copepod Acartia tonsa. J. Plankton Res. 1999, 21, 2037–2052. [Google Scholar] [CrossRef]
- Holzman, R.; Wainwright, P.C. How to surprise a copepod: Strike kinematics reduce hydrodynamic disturbance and increase stealth of suction-feeding fish. Computer 2009, 54, 2201–2212. [Google Scholar] [CrossRef] [Green Version]
- Gemmell, B.J.; Adhikari, D.; Longmire, E.K. Volumetric quantification of fluid flow reveals fish’s use of hydrodynamic stealth to capture evasive prey Volumetric quantification of fluid flow reveals fish’s use of hydrodynamic stealth to capture evasive prey. J. R. Soc. Interface 2014, 11, 20130880. [Google Scholar] [CrossRef] [Green Version]
- Coughlin, D.J.; Strickler, J.R. Zooplankton capture by a coral reef fish: An adaptive response to evasive prey. Environ. Biol. Fishes 1990, 29, 35–42. [Google Scholar] [CrossRef]
- Gemmell, B.J.; Buskey, E.J. The transition from nauplii to copepodites: Susceptibility of developing copepods to fish predators. J. Plankton Res. 2011, 33, 1773–1777. [Google Scholar] [CrossRef] [Green Version]
- Waggett, R.J.; Buskey, E.J. Copepod escape behavior in non-turbulent and turbulent hydrodynamic regimes. Mar. Ecol. Prog. Ser. 2007, 334, 193–198. [Google Scholar] [CrossRef]
- Waggett, R.J.; Buskey, E.J. Calanoid copepod escape behavior in response to a visual predator. Mar. Biol. 2007, 150, 599–607. [Google Scholar] [CrossRef]
- Costello, J.H.; Colin, S.P. Flow and feeding by swimming scyphomedusae. Mar. Biol. 1995, 124, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Suchman, C.L. Escape behavior of Acartia hudsonica copepods during interactions with scyphomedusae. J. Plankton Res. 2000, 22, 2307–2323. [Google Scholar] [CrossRef] [Green Version]
- Nagata, R.M.; Morandini, A.C.A.; Colin, S.P.; Migotto, A.E.; Costello, J.H.J. Transitions in morphologies, fluid regimes, and feeding mechanisms during development of the medusa Lychnorhiza lucerna. Mar. Ecol. Prog. Ser. 2016, 557, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Dabiri, J.O. Transport of inertial particles by Lagrangian coherent structures: Application to predator–prey interaction in jellyfish feeding. J. Fluid Mech. 2009, 623, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Suchman, C.L.; Sullivan, B.K. Effect of prey size on vulnerability of copepods to predation by the scyphome Aurelia aurita and Cyanea sp. J. Plankton Res. 2000, 22, 2289–2306. [Google Scholar] [CrossRef] [Green Version]
- Purcell, J.E.; Arai, M.N. Interactions of pelagic cnidarians and ctenophores with fish: A review. Hydrobiologia 2001, 451, 27–44. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, Z.; Costello, J.H.; Colin, S.P. Fluid and Predator-Prey Interactions of Scyphomedusae Fed Calanoid Copepods. Fluids 2020, 5, 60. https://doi.org/10.3390/fluids5020060
Wagner Z, Costello JH, Colin SP. Fluid and Predator-Prey Interactions of Scyphomedusae Fed Calanoid Copepods. Fluids. 2020; 5(2):60. https://doi.org/10.3390/fluids5020060
Chicago/Turabian StyleWagner, Zachary, John H. Costello, and Sean P. Colin. 2020. "Fluid and Predator-Prey Interactions of Scyphomedusae Fed Calanoid Copepods" Fluids 5, no. 2: 60. https://doi.org/10.3390/fluids5020060
APA StyleWagner, Z., Costello, J. H., & Colin, S. P. (2020). Fluid and Predator-Prey Interactions of Scyphomedusae Fed Calanoid Copepods. Fluids, 5(2), 60. https://doi.org/10.3390/fluids5020060