Computational Predictions for Boger Fluids and Circular Contraction Flow under Various Aspect Ratios †
Abstract
:1. Background and Introduction
2. Governing Flow Equations, Material Functions, Problem Specification, and Numerical Algorithm
2.1. Constitutive Modeling
2.2. Material Functions
2.3. Problem Specification and Numerical Scheme
3. Results—Computational Predictions and Flow-Structure versus Pressure-Drop Correlation
3.1. 8:1 Contraction Flow: Flow-Structure (Vortices and First Normal-Stress Difference N1) and Pressure Drops
3.2. Lip-Vortex Predictive Capabilities of the SwIM—Vortex-Dynamics across αaspect = {2, 4, 8} Circular Contraction Flow
3.2.1. 8:1 Contraction Flow: Flow-Rate and Solvent-Fraction Adjustment (1/9 ≤ β ≤ 0.9)
3.2.2. Comparison across Geometric Aspect-Ratios αaspect
3.2.3. αaspect = 4 and αaspect = 2 Ratios: Lip-Vortices, Rise in Wi, Extensibility-Parameter , and Solvent-Fraction Switch
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boger, D.V. Viscoelastic flows through contractions. Ann. Rev. Fluid Mech. 1987, 19, 157–182. [Google Scholar] [CrossRef]
- Boger, D.V.; Hur, D.U.; Binnington, R.J. Further observations of elastic effects in tubular entry flows. J. Non-Newton. Fluid Mech. 1986, 20, 31–49. [Google Scholar] [CrossRef]
- López-Aguilar, J.E.; Webster, M.F.; Tamaddon-Jahromi, H.R.; Walters, K. Numerical vs experimental pressure drops for Boger fluids in sharp-corner contraction flow. Phys. Fluids 2016, 28, 103104. [Google Scholar] [CrossRef] [Green Version]
- Tamaddon-Jahromi, H.R.; López-Aguilar, J.E.; Webster, M.F. On modelling viscoelastic flow through abrupt circular 8:1 contractions—Matching experimental pressure-drops and vortex structures. J. Non-Newton. Fluid Mech. 2018, 251, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Nigen, S.; Walters, K. Viscoelastic contraction flows: Comparison of axisymmetric and planar configurations. J. Non-Newton. Fluid Mech. 2002, 102, 343–359. [Google Scholar] [CrossRef]
- Binding, D.M.; Couch, M.A.; Walters, K. The pressure dependence of the shear and elongational properties of polymer melts. J. Non-Newton. Fluid Mech. 1998, 79, 137–155. [Google Scholar] [CrossRef]
- Pérez-Camacho, M.; López-Aguilar, J.E.; Calderas, F.; Manero, O.; Webster, M.F. Pressure-drop and kinematics of viscoelastic flow through an axisymmetric contraction—Expansion geometry with various contraction-ratios. J. Non-Newton. Fluid Mech. 2015, 222, 260–271. [Google Scholar] [CrossRef]
- Tamaddon-Jahromi, H.R.; Garduño, I.E.; López-Aguilar, J.E.; Webster, M.F. Predicting Excess pressure drop (epd) for Boger fluids in expansion-contraction flow. J. Non-Newton. Fluid Mech. 2016, 230, 43–67. [Google Scholar] [CrossRef] [Green Version]
- López-Aguilar, J.E.; Webster, M.F.; Tamaddon-Jahromi, H.R.; Pérez-Camacho, M.; Manero, O. Contraction-ratio variation and prediction of large experimental pressure-drops in sharp-corner circular contraction-expansions—Boger fluids. J. Non-Newton. Fluid Mech. 2016, 237, 39–53. [Google Scholar] [CrossRef] [Green Version]
- López-Aguilar, J.E.; Webster, M.F.; Tamaddon-Jahromi, H.R.; Manero, O.; Binding, D.M.; Walters, K. On the use of continuous spectrum and discrete-mode differential models to predict contraction-flow pressure drops for Boger fluids. Phys. Fluids 2017, 29, 121613. [Google Scholar] [CrossRef]
- Webster, M.F.; Tamaddon-Jahromi, H.R.; López-Aguilar, J.E.; Binding, D.M. Enhanced pressure drop, planar contraction flows and continuous-spectrum models. J. Non-Newton. Fluid Mech. 2019, 273, 104184. [Google Scholar] [CrossRef]
- Walters, K.; Webster, M.F. The distinctive CFD challenges of computational rheology. Int. J. Numer. Meth. Fluids 2003, 43, 577–596. [Google Scholar] [CrossRef]
- White, S.A.; Gotsis, A.D.; Baird, D.G. Review of the entry flow problem: Experimental and numerical. J. Non-Newton. Fluid Mech. 1987, 24, 121–160. [Google Scholar] [CrossRef]
- Owens, R.G.; Phillips, T.N. Computational Rheology, 1st ed.; Imperial College Press: London, UK, 2002. [Google Scholar]
- Boger, D.V.; Binnington, R.J. Experimental removal of the re-entrant corner singularity in tubular entry flows. J. Rheol. 1994, 38, 333–349. [Google Scholar] [CrossRef]
- Rothstein, J.P.; McKinley, G.H. The axisymmetric contraction-expansion: The role of extensional rheology on vortex growth dynamics and the enhanced pressure drop. J. Non-Newton. Fluid Mech. 2001, 98, 33–63. [Google Scholar] [CrossRef]
- Sato, T.; Richardson, S.M. Explicit numerical simulation of time dependent viscoelastic flow problems by a finite element/finite volume method. J. Non-Newton. Fluid Mech. 1994, 51, 249–275. [Google Scholar] [CrossRef]
- Olsson, F. A solver for time-dependent viscoelastic fluid flows. J. Non-Newton. Fluid Mech. 1994, 51, 309–340. [Google Scholar] [CrossRef]
- Wapperom, P.; Webster, M.F. A second-order hybrid finite-element/volume method for viscoelastic flows. J. Non-Newton. Fluid Mech. 1998, 79, 405–431. [Google Scholar] [CrossRef] [Green Version]
- Webster, M.F.; Tamaddon-Jahromi, H.R.; Aboubacar, M. Time-Dependent Algorithms for Viscoelastic Flow: Finite Element/Volume Schemes. Numer. Meth. Par. Diff. Eq. 2005, 21, 272–296. [Google Scholar] [CrossRef] [Green Version]
- Aboubacar, M.; Webster, M.F. A cell-vertex finite volume/element method on triangles for abrupt contraction viscoelastic flows. J. Non-Newton. Fluid Mech. 2001, 98, 83–106. [Google Scholar] [CrossRef]
- López-Aguilar, J.E.; Webster, M.F.; Tamaddon-Jahromi, H.R.; Manero, O. High-Weissenberg predictions for micellar fluids in contraction–expansion flows. J. Non-Newton. Fluid Mech. 2015, 222, 190–208. [Google Scholar] [CrossRef]
- López-Aguilar, J.E.; Webster, M.F.; Tamaddon-Jahromi, H.R.; Manero, O. Convoluted models & high-Weissenberg predictions for micellar thixotropic fluids in contraction-expansion flows. J. Non-Newton. Fluid Mech. 2016, 232, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Chilcott, M.D.; Rallison, J.M. Creeping flow of dilute polymer solutions past cylinders and spheres. J. Non-Newton. Fluid Mech. 1988, 29, 381–432. [Google Scholar] [CrossRef]
- White, J.L.; Metzner, A.B. Development of constitutive equations for polymeric melts and solutions. J. Appl. Polym. Sci. 1963, 7, 1867–1889. [Google Scholar] [CrossRef]
- Debbaut, B.; Crochet, M.J. Extensional Effects in Complex Flows. J. Non-Newton. Fluid Mech. 1988, 30, 169–184. [Google Scholar] [CrossRef]
- Debbaut, B.; Crochet, M.J.; Barnes, H.A.; Walters, K. Extensional effects in inelastic liquids. In Proceedings of the Xth International Congress on Rheology, Sydney, Australia, 14–18 August 1988; Australian Society of Rheology: Sidney, Australia, 1988; pp. 291–293. [Google Scholar]
- Binding, D.M.; Walters, K. On the use of flow through a contraction in estimating the extensional the extensional viscosity of mobile polymer solutions. J. Non-Newton. Fluid Mech. 1988, 30, 233–250. [Google Scholar] [CrossRef]
Mesh αaspect | Elements | Nodes | |
---|---|---|---|
2 | 2762 | 5787 | 36,235 |
4 | 2987 | 6220 | 38,937 |
8 (refined) | 2016 | 4191 | 26,234 |
8 (medium) | 1707 | 3634 | 22,768 |
8 (coarse) | 868 | 1897 | 11,897 |
Wi/αaspect | 2 | 4 | 8 |
---|---|---|---|
1 | 0.0006 | 0.0009 | 0.0008 |
3 | 0.0043 | 0.0048 | 0.0005 0.0029(lv) |
5 | 0.0244 | 0.0277 | 0.0093 0.0271(lv) |
10 | 0.0841 | 0.2874 | 0.3028 |
20 | 0.2654 | 1.132 | 1.589 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Aguilar, J.E.; Tamaddon-Jahromi, H.R. Computational Predictions for Boger Fluids and Circular Contraction Flow under Various Aspect Ratios. Fluids 2020, 5, 85. https://doi.org/10.3390/fluids5020085
López-Aguilar JE, Tamaddon-Jahromi HR. Computational Predictions for Boger Fluids and Circular Contraction Flow under Various Aspect Ratios. Fluids. 2020; 5(2):85. https://doi.org/10.3390/fluids5020085
Chicago/Turabian StyleLópez-Aguilar, J. Esteban, and Hamid R. Tamaddon-Jahromi. 2020. "Computational Predictions for Boger Fluids and Circular Contraction Flow under Various Aspect Ratios" Fluids 5, no. 2: 85. https://doi.org/10.3390/fluids5020085
APA StyleLópez-Aguilar, J. E., & Tamaddon-Jahromi, H. R. (2020). Computational Predictions for Boger Fluids and Circular Contraction Flow under Various Aspect Ratios. Fluids, 5(2), 85. https://doi.org/10.3390/fluids5020085