On the Formation and Accumulation of Solid Carbon Particles in High-Enthalpy Flows Mimicking Re-Entry in the Titan Atmosphere
Abstract
:1. Introduction
2. The Facility and (Related)Experimental Techniques
- An electric arc-heater (industrial plasma torch, Sulzer-Metco type 9-M), operating with pure inert gases (nitrogen in the present case);
- A mixing chamber where the nitrogen plasma is mixed with cold gases (methane in the present case) to simulate planetary atmospheres;
- Four different conical nozzles (area ratios 4, 20, 56, 100) for operations in supersonic and hypersonic flow regime;
- A cylindrical vacuum test chamber (ultimate pressure is in the order of 50 Pa).
- pt at the mixing chamber exit;
- pne at the nozzle exit;
- pts at the test section;
- p02 impact pressure at the stream centerline.
3. Results
3.1. Ground Model
3.1.1. Carbon Formation in SPES (DC Plasma Torch)
3.1.2. Carbon Formation in an Induction Plasma Torch
3.1.3. Carbon Formation—Ground Simulation
3.1.4. Carbon Experimental Characterization
3.2. Carbon Formation—Flight Simulation
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Dubois, D.; Carrasco, N.; Petrucciani, M.; Vettier, L.; Tigrin, S.; Pernot, P. In situ investigation of neutrals involved in the formation of Titan tholins. Icarus 2019, 317, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Bernard, J.M.; Colla, P.; Coustenis, A.; Raulina, F. Experimental simulation of Titan’s atmosphere: Detection of ammonia and ethylene oxide. Planet. Space Sci. 2003, 51, 1003–1011. [Google Scholar] [CrossRef]
- Carrasco, N.; Gautier, T.; Es-sebbar, E.; Pernot, P.; Cernogora, G. Volatile products controlling Titan’s tholins production. Icarus 2012, 219, 230–240. [Google Scholar] [CrossRef]
- Wang, J.; Han, F.; Lei, L.; Lee, C. Numerical Study of High-Temperature Nonequilibrium Flow around Reentry Vehicle Coupled with Thermal Radiation. Fluid Dyn. Mater. Process. 2020, 16, 601–613. [Google Scholar] [CrossRef]
- Esposito, A.; Lappa, M. Experimental and Theoretical Verification of the Frozen Sonic Flow Method for Mixtures of Polyatomic Gases. AIAA J. 2019, 58, 265–277. [Google Scholar] [CrossRef]
- Vacher, D.; Menecier, S.; Dudeck, M.; Dubois, M.; Devouard, B.; Petit, E. Solid Carbon Produced in an Inductively Coupled Plasma Torch with a Titan Like Atmosphere. Int. J. Aerospace Eng. 2013, 2013, 546385. [Google Scholar] [CrossRef]
- Carandente, V.; Savino, R.; Esposito, A.; Zuppardi, G.; Caso, V. Experimental and numerical simulation, by an arc-jet facility, of hypersonic flow in Titan’s atmosphere. Exp. Therm. Fluid. 2013, 48, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Lappa, M. On the transport, segregation and dispersion of heavy and light particles interacting with rising thermal plumes. Phys. Fluids 2018, 30, 033302. [Google Scholar] [CrossRef] [Green Version]
- Lappa, M. Stationary Solid Particle Attractors in Standing Waves. Phys. Fluids 2014, 26, 013305. [Google Scholar] [CrossRef] [Green Version]
- Lappa, M. Time reversibility and non-deterministic behaviour in oscillatorily sheared suspensions of non-interacting particles at high Reynolds numbers. Comput. Fluids 2019, 184, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Lappa, M.; Piccolo, C.; Carotenuto, L. Numerical and experimental analysis of periodic patterns and sedimentation of lysozyme. J. Cryst. Growth 2003, 254, 469–486. [Google Scholar] [CrossRef]
- Lappa, M.; Esposito, A.; Aponte, F.; Allouis, C. High Velocity Infrared Thermography and Numerical Trajectories of Solid Particles in Compressible Gas Flow. Powder Technol. 2019, 343, 671–682. [Google Scholar] [CrossRef] [Green Version]
- Jewell, J.S.; Parziale, N.J.; Leyva, I.A.; Shepherd, J.E. Effects of shock-tube cleanliness on hypersonic boundary layer transition at high enthalpy. AIAA J. 2017, 55, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Chuvakhov, P.V.; Fedorov, A.V.; Obraz, A.O. Numerical modelling of supersonic boundary-layer receptivity to solid particulates. J. Fluid Mech. 2019, 859, 949–971. [Google Scholar] [CrossRef]
- Lappa, M.; Drikakis, D.; Kokkinakis, I. On the propagation and multiple reflections of a blast wave travelling through a dusty gas in a closed box. Phys. Fluids 2017, 29, 033301. [Google Scholar] [CrossRef] [Green Version]
- Pope, R.B. Measurements of enthalpy in low-density arc-heated flows. AIAA J. 1968, 6, 103–110. [Google Scholar] [CrossRef]
- Gordon, S.; McBride, B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis. NASA RP-13111994. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950013764.pdf (accessed on 10 June 2020).
- Commodo, M.; Joo, P.H.; De Falco, G.; D’Anna, A.; Gülder, O.L. Raman Spectroscopy of Soot Sampled in High-Pressure Diffusion Flames. Energy Fuels 2017, 31, 10158–10164. [Google Scholar] [CrossRef]
- Ferrari, C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. A 2004, 362, 2477–2512. [Google Scholar] [CrossRef]
- Gargiulo, V.; Apicella, B.; Russo, C.; Stanzione, F.; Tregrossi, A.; Millan, M.; Ciajolo, A. Structural Characterization of Large Polycyclic Aromatic Hydrocarbons. Part 2: Solvent-Separated Fractions of Coal Tar Pitch and Naphthalene-Derived Pitch. Energy Fuels 2016, 30, 2574–2583. [Google Scholar] [CrossRef]
- Panariello, M.; Apicella, B.; Armenante, M.; Bruno, A.; Ciajolo, A.; Spinelli, N. Analysis of polycyclic aromatic hydrocarbon sequences in a premixed laminar flame by on-line time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 573–581. [Google Scholar] [CrossRef]
- Hodyss, R.; McDonald, G.; Sarker, N.; Smith, M.A.; Beauchamp, P.M.; Beauchamp, J.L. Fluorescence spectra of Titan tholins: In-situ detection of astrobiologically interesting areas on Titan’s surface. Icarus 2004, 171, 525–530. [Google Scholar] [CrossRef]
- Carrasco, N.; Schmitz-Afonso, I.; Bonnet, J.-Y.; Quirico, E.; Thissen, R.; Dutuit, O.; Bagag, A.; Laprévote, O.; Buch, A.; Giulani, A.; et al. Chemical Characterization of Titan’s Tholins: Solubility, Morphology and Molecular Structure Revisited. J. Phys. Chem. A 2009, 113, 11195–11203. [Google Scholar] [CrossRef] [PubMed]
- Savajano, R.; Sobbia, R.; Gaffuri, M.; Leyland, P. Reduced Chemical Kinetic Model for Titan Entries. Int. J. Chem. Eng. 2011, 2011, 970247. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.; Hollis, B.R.; Bose, D.; Walpot, L. Post-Flight Aerothermal Analysis of Huygens Problem. In Proceedings of the 3rd International Workshop Planetary Probe, Anavyssos, Attiki, Greece, 27 June–1 July 2005. [Google Scholar]
- Vallerani, E. A review of supersonic sphere drag from the continuum to the free molecular flow regime. In Proceedings of the 41st AGARD (Advisory Group for Aerospace Research and Development) Conference, London, UK, April 1973; pp. 1–15. [Google Scholar]
- Moss, J.N. Rarefied flows of planetary entry capsules. In Proceedings of the Special Course on Capsule Aerothermodynamics, von Kármán Institute for Fluid Dynamics (VKI), Rhode-Saint-Genèse, Belgium, 20–22 March 1995. [Google Scholar]
- Bird, G.A. Molecular Gas Dynamics and Direct Simulation Monte Carlo; Clarendon Press: Oxford, UK, 1998. [Google Scholar]
- Bird, G.A. The DSMC Method, Version 1.1; Amazon: Charleston, SC, USA, 2013. [Google Scholar]
- Shen, C. Rarefied Gas Dynamic: Fundamentals, Simulations and Micro Flows; Springer: Berlin, Germany, 2005. [Google Scholar]
- Bird, G.A. Visual DSMC Program for Two-Dimensional Flows, the DS2V Program User’s Guide; Version 4.5; G.A.B. Consulting Pty Ltd.: Sidney, Australia, 2008. [Google Scholar]
- Bouilly, J.M. Thermal protection of the Huygens Probe during Titan entry: Last questions. In Proceedings of the 2nd International Planetary Probe Workshop, Mountain View, CA, USA, 23–27 August 2004; pp. 113–120. [Google Scholar]
- Yelle, R.V.; Strobell, D.F.; Lellouch, E.; Gautier, D. Engineering Models for Titan’s Atmosphere. In Proceedings of the ESA Conference on “Huygens: Science, Payload and Mission”, Noordwijk, The Netherland, June 1997; pp. 243–256. [Google Scholar]
mgas_N2 [g/s] | mgas_CH4 [g/s] | Hne [MJ/kg] | P02 [Pa] |
---|---|---|---|
0.4 | 0.1 | 9.3–24.4 | 3800–6500 |
Test | h [km] | V∞[m/s] | η∞[1/m3] | H∞ [MJ/kg] |
---|---|---|---|---|
1 | 470 | 6167 | 1.295 × 1020 | 19.2 |
2 | 375 | 6049 | 8.117 × 1020 | 18.5 |
3 | 340 | 5886 | 1.590 × 1021 | 17.5 |
4 | 295 | 5490 | 3.916 × 1021 | 15.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, A.; Lappa, M.; Zuppardi, G.; Allouis, C.; Apicella, B.; Commodo, M.; Minutolo, P.; Russo, C. On the Formation and Accumulation of Solid Carbon Particles in High-Enthalpy Flows Mimicking Re-Entry in the Titan Atmosphere. Fluids 2020, 5, 93. https://doi.org/10.3390/fluids5020093
Esposito A, Lappa M, Zuppardi G, Allouis C, Apicella B, Commodo M, Minutolo P, Russo C. On the Formation and Accumulation of Solid Carbon Particles in High-Enthalpy Flows Mimicking Re-Entry in the Titan Atmosphere. Fluids. 2020; 5(2):93. https://doi.org/10.3390/fluids5020093
Chicago/Turabian StyleEsposito, Antonio, Marcello Lappa, Gennaro Zuppardi, Christophe Allouis, Barbara Apicella, Mario Commodo, Patrizia Minutolo, and Carmela Russo. 2020. "On the Formation and Accumulation of Solid Carbon Particles in High-Enthalpy Flows Mimicking Re-Entry in the Titan Atmosphere" Fluids 5, no. 2: 93. https://doi.org/10.3390/fluids5020093
APA StyleEsposito, A., Lappa, M., Zuppardi, G., Allouis, C., Apicella, B., Commodo, M., Minutolo, P., & Russo, C. (2020). On the Formation and Accumulation of Solid Carbon Particles in High-Enthalpy Flows Mimicking Re-Entry in the Titan Atmosphere. Fluids, 5(2), 93. https://doi.org/10.3390/fluids5020093