Impacts of Microplastics on the Swimming Behavior of the Copepod Temora turbinata (Dana, 1849)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling, Sorting and Exposure of Copepods to MPs
2.2. Acquisition of Trajectory Data and Analysis of Swimming Behavior
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barnes, D.K.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, M.; Lebreton, L.C.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [Green Version]
- Zarfl, C.; Matthies, M. Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar. Pollut. Bull. 2010, 60, 1810–1814. [Google Scholar] [CrossRef]
- Betts, K. Why Small Plastic Particles May Pose a Big Problem in the Oceans; ACS Publications: Washington, DC, USA, 2008. [Google Scholar]
- Napper, I.E.; Thompson, R.C. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Fendall, L.S.; Sewell, M.A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 2009, 58, 1225–1228. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 2017, 51, 4368–4376. [Google Scholar] [CrossRef]
- Ter Halle, A.; Ladirat, L.; Gendre, X.; Goudounèche, D.; Pusineri, C.; Routaboul, C.; Tenailleau, C.; Duployer, B.; Perez, E. Understanding the fragmentation pattern of marine plastic debris. Environ. Sci. Technol. 2016, 50, 5668–5675. [Google Scholar] [CrossRef] [Green Version]
- Lusher, A.; Mchugh, M.; Thompson, R. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 2013, 67, 94–99. [Google Scholar] [CrossRef]
- Browne, M.A.; Niven, S.J.; Galloway, T.S.; Rowland, S.J.; Thompson, R.C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 2013, 23, 2388–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Vieira, L.R.; Branco, V.; Figueiredo, N.; Carvalho, F.; Carvalho, C.; Guilhermino, L. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat. Toxicol. 2018, 195, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Facciolo, R.M.; Madeo, M.; Giusi, G.; Carelli, A.; Canonaco, M. Effects of the xenoestrogen bisphenol A in diencephalic regions of the teleost fish Coris julis occur preferentially via distinct somatostatin receptor subtypes. Brain Res. Bull. 2005, 65, 267–273. [Google Scholar]
- Welden, N.A.; Cowie, P.R. Environment and gut morphology influence microplastic retention in langoustine, Nephrops norvegicus. Environ. Pollut. 2016, 214, 859–865. [Google Scholar] [CrossRef]
- Derraik, J.G. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Cole, M.; Galloway, T.S. Ingestion of nanoplastics and microplastics by Pacific oyster larvae. Environ. Sci. Technol. 2015, 49, 14625–14632. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 2004, 43, 255–266. [Google Scholar]
- Turner, J.T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 2015, 130, 205–248. [Google Scholar] [CrossRef]
- Zöllner, E.; Hoppe, H.-G.; Sommer, U.; Jürgens, K. Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnol. Oceanogr. 2009, 54, 262–275. [Google Scholar] [CrossRef]
- Gannon, J.E.; Stemberger, R.S. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. Am. Microsc. Soc. 1978, 97, 16–35. [Google Scholar] [CrossRef]
- Zannatul, F.; Muktadir, A. A review: Potentiality of zooplankton as bioindicator. Am. J. Appl. Sci. 2009, 6, 1815–1819. [Google Scholar]
- Kiørboe, T. A Mechanistic Approach to Plankton Ecology; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Frost, B.W. Feeding behavior of Calanus pacificus in mixtures of food particles 1. Limnol. Oceanogr. 1977, 22, 472–491. [Google Scholar] [CrossRef]
- Lopes, R.M.; Brandini, F.P.; Gaeta, S.A. Distribution patterns of epipelagic copepods off Rio de Janeiro (SE Brazil) in summer 1991/1992 and winter 1992. Hydrobiologia 1999, 411, 161–174. [Google Scholar] [CrossRef]
- Irigoien, X. Gut clearance rate constant, temperature and initial gut contents: A review. J. Plankton Res. 1998, 20, 997–1003. [Google Scholar] [CrossRef] [Green Version]
- Buskey, E.J.; Baker, K.S.; Smith, R.C.; Swift, E. Photosensitivity of the oceanic copepods Pleuromamma gracilis and Pleuromamma xiphias and its relationship to light penetration and daytime depth distribution. Mar. Ecol. Prog. Ser. 1989, 55, 207–216. [Google Scholar] [CrossRef]
- Nayak, A.R.; McFarland, M.N.; Sullivan, J.M.; Twardowski, M.S. Evidence for ubiquitous preferential particle orientation in representative oceanic shear flows. Limnol. Oceanogr. 2018, 63, 122–143. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-R.; Hwang, J.-S. The swimming behavior of the calanoid copepod Calanus sinicus under different food concentrations. Zool. Stud. 2018, 57, e13. [Google Scholar]
- Buskey, E.J. Swimming pattern as an indicator of the roles of copepod sensory systems in the recognition of food. Mar. Biol. 1984, 79, 165–175. [Google Scholar] [CrossRef]
- Visser, A.W.; Kiørboe, T. Plankton motility patterns and encounter rates. Oecologia 2006, 148, 538–546. [Google Scholar] [CrossRef]
- De Felice, B.; Sabatini, V.; Antenucci, S.; Gattoni, G.; Santo, N.; Bacchetta, R.; Ortenzi, M.A.; Parolini, M. Polystyrene microplastics ingestion induced behavioral effects to the cladoceran Daphnia magna. Chemosphere 2019, 231, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, C.; Morgana, S.; Ferrando, S.; Bramini, M.; Piazza, V.; Costa, E.; Garaventa, F.; Faimali, M. Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicol. Environ. Saf. 2017, 145, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, L.; Zheng, H.; Wang, M.; Fu, Y.; Luo, X.; Li, F.; Wang, Z. Polystyrene microplastics impaired the feeding and swimming behavior of mysid shrimp Neomysis japonica. Mar. Pollut. Bull. 2020, 150, 110660. [Google Scholar] [CrossRef] [PubMed]
- Desforges, J.-P.W.; Galbraith, M.; Ross, P.S. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 2015, 69, 320–330. [Google Scholar] [CrossRef]
- Powell, M.D.; Berry, A. Ingestion and regurgitation of living and inert materials by the estuarine copepod Eurytemora affinis (Poppe) and the influence of salinity. Estuar. Coast. Shelf Sci. 1990, 31, 763–773. [Google Scholar] [CrossRef]
- Setälä, O.; Fleming-Lehtinen, V.; Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 2014, 185, 77–83. [Google Scholar] [CrossRef]
- Van Alstyne, K.L. Effects of phytoplankton taste and smell on feeding behavior of the copepod Centropages hamatus. Mar. Ecol. Prog. Ser. 1986, 34, 187–190. [Google Scholar] [CrossRef]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Paffenhöfer, G.-A.; Van Sant, K.B. The feeding response of a marine planktonic copepod to quantity and quality of particles. Mar. Ecol. Prog. Ser. 1985, 27, 55–65. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, R.; Moger, J.; Galloway, T.S. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 2013, 47, 6646–6655. [Google Scholar] [CrossRef]
- Ayukai, T. Discriminate feeding of the calanoid copepod Acartia clausi in mixtures of phytoplankton and inert particles. Mar. Biol. 1987, 94, 579–587. [Google Scholar] [CrossRef]
- Kleppel, G.; Burkart, C.; Carter, K.; Tomas, C. Diets of calanoid copepods on the West Florida continental shelf: Relationships between food concentration, food composition and feeding activity. Mar. Biol. 1996, 127, 209–217. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Galloway, T.S. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 2015, 49, 1130–1137. [Google Scholar] [CrossRef]
- Ogonowski, M.; Schür, C.; Jarsén, Å.; Gorokhova, E. The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna. PLoS ONE 2016, 11, e0155063. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-H.; Dahms, H.-U.; Buskey, E.J.; Strickler, J.R.; Hwang, J.-S. Behavioral interactions of the copepod Temora turbinata with potential ciliate prey. Zool. Stud. 2010, 49, 157–168. [Google Scholar]
- Lozano, R.; Mouat, J. Marine litter in the North-East Atlantic Region: Assessment and Priorities for Response. Available online: https://www.semanticscholar.org/paper/Marine-litter-in-the-Northeast-Atlantic-Region%3A-and-Other-Lozano/411a7c97d29b5874d6799c58f7983149bcb049c6 (accessed on 1 June 2020).
- Nichols, J.; Thompson, A. Mesh selection of copepodite and nauplius stages of four calanoid copepod species. J. Plankton Res. 1991, 13, 661–671. [Google Scholar] [CrossRef]
- Lombard, F.; Boss, E.; Waite, A.M.; Vogt, M.; Uitz, J.; Stemmann, L.; Sosik, H.M.; Schulz, J.; Romagnan, J.-B.; Picheral, M. Globally consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 2019, 6, 196. [Google Scholar] [CrossRef] [Green Version]
- Brahney, J.; Hallerud, M.; Heim, E.; Hahnenberger, M.; Sukumaran, S. Plastic rain in protected areas of the United States. Science 2020, 368, 1257–1260. [Google Scholar] [CrossRef]
- Carbery, M.; O’Connor, W.; Palanisami, T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ. Int. 2018, 115, 400–409. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Gao, H.; Jin, S.; Li, R.; Na, G. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review. Ecotoxicol. Environ. Saf. 2019, 173, 110–117. [Google Scholar] [CrossRef]
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 2017, 1, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.N.; Visser, A.W. Carbon export by vertically migrating zooplankton: An optimal behavior model. Limnol. Oceanogr. 2016, 61, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Cedervall, T.; Hansson, L.-A.; Lard, M.; Frohm, B.; Linse, S. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS ONE 2012, 7, e32254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | Mean Speed (mm s−1) | Mean Instantaneous Speed (mm s−1) | NGDR | Turning Angle (°) |
---|---|---|---|---|
CC (n = 187) | 2.88 ± 1.35 | 3.23 ± 2.34 | 0.52 ± 0.3 | 19.33 ± 12.05 |
LC (n = 309) | 3.09 ± 1.92 | 3.19 ± 2.55 | 0.57 ± 0.28 | 17.69 ± 15.42 |
HC (n = 157) | 1.99 ± 1.41 | 1.94 ± 2.29 | 0.66 ± 0.28 | 27.22 ± 24.27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwaki, C.H.; De-La-Cruz, L.T.; Lopes, R.M. Impacts of Microplastics on the Swimming Behavior of the Copepod Temora turbinata (Dana, 1849). Fluids 2020, 5, 103. https://doi.org/10.3390/fluids5030103
Suwaki CH, De-La-Cruz LT, Lopes RM. Impacts of Microplastics on the Swimming Behavior of the Copepod Temora turbinata (Dana, 1849). Fluids. 2020; 5(3):103. https://doi.org/10.3390/fluids5030103
Chicago/Turabian StyleSuwaki, Caroline H., Leandro T. De-La-Cruz, and Rubens M. Lopes. 2020. "Impacts of Microplastics on the Swimming Behavior of the Copepod Temora turbinata (Dana, 1849)" Fluids 5, no. 3: 103. https://doi.org/10.3390/fluids5030103
APA StyleSuwaki, C. H., De-La-Cruz, L. T., & Lopes, R. M. (2020). Impacts of Microplastics on the Swimming Behavior of the Copepod Temora turbinata (Dana, 1849). Fluids, 5(3), 103. https://doi.org/10.3390/fluids5030103