Experimental Investigation of Vortex-Tube Streamwise-Vorticity Characteristics and Interaction Effects with a Finite-Aspect-Ratio Wing
Abstract
:1. Introduction
2. Experimental Setup
2.1. Pressurized Vortex Tube
2.2. Wind Tunnel
2.3. Particle Image Velocimetry (PIV) Setup
3. Results
3.1. 2D Velocity Maps, Vectors and Streamlines
3.2. 3D Tomographic Test Results Overview
3.3. 3D Tomographic Data Analyses
3.4. 3D Tomographic x-Vorticity and Q-Criterion Analysis
3.5. 3D Airfoil Interaction Test Velocity Data
3.6. 3D Airfoil Interaction Test Vorticity Data
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lugt, H.J. Vortex Flow in Nature and Technology; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Lissaman, P.B.S.; Shollenberger, C.A. Formation Flight of Birds. Science 1970, 168, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Blake, W.B.; Bieniawski, S.R.; Flanzer, T.C. Surfing aircraft vortices for energy. J. Def. Model. Simul. 2015, 12, 31–39. [Google Scholar] [CrossRef]
- Syred, N.; Beér, J.M. Combustion in swirling flows: A review. Combust. Flame 1974, 23, 143–201. [Google Scholar] [CrossRef]
- Garmann, D.J.; Visbal, M.R. Interactions of a streamwise-oriented vortex with a finite wing. J. Fluid Mech. 2015, 767, 782–810. [Google Scholar] [CrossRef]
- Gavrilović, N.N.; Rašuo, B.P.; Dulikravich, G.S.; Parezanović, V.B. Commercial aircraft performance improvement using winglets. FME Trans. 2015, 43, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rostamzadeh, N.; Hansen, K.L.; Kelso, R.M.; Dally, B.B. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification. Phys. Fluids 2014, 26, 107101. [Google Scholar] [CrossRef]
- Anderson, J.D. Fundamentals of Aerodynamics, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- NASA Glenn Research Center. Downwash Effects on Lift. 2015. Available online: https://www.grc.nasa.gov/WWW/k-12/airplane/downwash.html (accessed on 10 March 2020).
- McLean, D. Wingtip Devices: What They Do and How They Do It. In Proceedings of the Boeing Performance and Flight Operations Engineering Conference, Seattle, WA, USA, 22–23 September 2005. [Google Scholar]
- Talay, T.A. Introduction to the Aerodynamics of Flight; Technical Report; NASA SP367: Washington, DC, USA, 1975.
- Whitcomb, R.T. A Design Approach and Select Wind-Tunnel Results at High Subsonic Speeds for Wing-Tip Mounted Winglets; NASA Langley Research Center: Hampton, VA, USA, 1976.
- Federal Aviation Administration. Pilot and Air Traffic Controller Guide to Wake Turbulence. Available online: https://www.faa.gov/training_testing/training/media/wake/04sec2.pdf (accessed on 10 March 2020).
- Tao, Y.; Liu, Z.; Xiong, N.; Sun, Y.; Lin, J. Optimization of Positional Parameters of Close-Formation Flight for Blended-Wing-Body Configuration. Heliyon 2018, 4, e01019. [Google Scholar]
- Mohiuddin, M.; Elbel, S. A Fresh Look At Vortex Tubes Used As Expansion Device in Vapor Compression Systems. In Proceedings of the 15th International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 14–17 July 2014. [Google Scholar]
- Rašuo, B. The influence of Reynolds and Mach numbers on two-dimensional wind-tunnel testing: An experience. Aeronaut. J. 2011, 115, 249–254. [Google Scholar] [CrossRef]
- Rašuo, B. Scaling between Wind Tunnels-Results Accuracy in Two-Dimensional Testing. Trans. Jpn. Soc. Aeronaut. Space Sci. 2012, 55, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Damljanović, D.; Isaković, J.; Rašuo, B. T-38 wind-tunnel data quality assurance based on testing of a standard model. J. Aircr. 2013, 50, 1141–1149. [Google Scholar] [CrossRef]
- Ocokoljić, G.; Damljanović, D.; Vuković, D.; Rašuo, B.P. Contemporary Frame of Measurement and Assessment of Wind-Tunnel Flow Quality in a Low-Speed Facility. FME Trans. 2018, 46, 429–442. [Google Scholar] [CrossRef]
- Damljanović, D.; Vuković, D.; Ocokoljić, G.; Isaković, J.; Rašuo, B. A Study of Wall-Interference Effects in Wind-Tunnel Testing of a Standard Model at Transonic Speeds. In Proceedings of the 30th ICAS Congress, Daejeon, Korea, 25–30 September 2016. [Google Scholar]
- Barlow, J.B.; Rae, W.H.; Pope, A. Low Speed Wind Tunnel Testing, 3rd ed.; John Wiley&Sons, Ltd.: New York, NY, USA, 1999. [Google Scholar]
- Haque, A.U.; Asrar, W.; Omar, A.A.; Sulaeman, E.; Ali, M.J.S. Comparison of data correction methods for blockage effects in semispan wing model testing. In EPJ Web of Conferences; EFM15—Experimental Fluid Mechanics; EDP Sciences: Les Ulis, France, 2015; Volume 114, p. 02129. [Google Scholar] [CrossRef] [Green Version]
- Raffel, M.; Willert, C.E.; Scarano, F.; Kähler, C.J.; Wereley, S.T.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Scarano, F. Tomographic PIV: Principles and practice. Meas. Sci. Technol. 2014, 24, 012001. [Google Scholar] [CrossRef]
- Ullah, A.H.; Fabijanic, C.; Estevadeordal, J. Advanced Measurements and Analyses of Flow Past Three-Cylinder Rotating System. In Proceedings of the AIAA2020-2671, AIAA Aviation Forum, Reno, NV, USA, 8 June 2020. [Google Scholar]
- Carlson, B.M. Generation and Analysis of Streamwise Vortices from Vortex Tube Apparatus. Master’s Thesis, North Dakota State University, Fargo, ND, USA, May 2020. [Google Scholar]
- Hunt, J.C.; Wray, A.A.; Moin, P. Eddies, Streams, and Convergence Zones in Turbulent Flows. In Proceedings of the 1988 Summer Program, Stanford, CA, USA, 31 December 1988. [Google Scholar]
- Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. 1995, 285, 69–94. [Google Scholar] [CrossRef]
- Kolář, V. Vortex identification: New requirements and limitations. Int. J. Heat Fluid Flow 2007, 28, 638–652. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes, the Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Leibovich, S.; Stewartson, K. A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 1983, 126, 335–356. [Google Scholar] [CrossRef]
- Leibovich, S. The structure of vortex breakdown. Annu. Rev. Fluid Mech. 1978, 10, 221–246. [Google Scholar] [CrossRef]
- Visbal, M. Computed unsteady structure of spiral vortex breakdown on delta wings. In Proceedings of the AIAA Fluid Dynamics Conference, New Orleans, LA, USA, 17–20 June 1996. [Google Scholar]
- Drazin, P.G.; Reid, W.H. Hydrodynamic Stability, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Tennekes, H.; Lumley, J.L. A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Escudier, M.P. Observations of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids 1984, 2, 189–196. [Google Scholar] [CrossRef]
- Naumov, I.V.; Kashkarova, M.V.; Mikkelsen, R.F.; Okulov, V.L. The structure of the confined swirling flow under different phase boundary conditions at the fixed end of the cylinder. Thermophys. Aeromechanics 2020, 27, 89–94. [Google Scholar] [CrossRef]
- Sarpkaya, T. Vortex Breakdown in Swirling Conical Flows. AIAA J. 1971, 9, 1792–1799. [Google Scholar] [CrossRef]
- Hama, F.R. Streaklines in a perturbed shear flow. Phys. Fluids 1962, 5, 644–650. [Google Scholar] [CrossRef]
- Benjamin, T.B. Theory of the vortex breakdown phenomenon. J. Fluid Mech. 1962, 14, 593–629. [Google Scholar] [CrossRef]
WT Set (%) | WT Vel (m/s) | VT (psi) | VT Exit Plane Vel (m/s) | Uo (m/s) (V_avg) | Re (Uo × d/ν) | ||
---|---|---|---|---|---|---|---|
Vx_avg | Vy_avg | Vz_avg | |||||
3 | 0.21 | 0.21 | 1.01 | 1.07 | 5.77 | 6.95 | 2982 |
3 | 0.21 | 0.21 | 1.56 | 1.79 | 9.65 | 11.07 | 4752 |
3 | 0.21 | 0.21 | 2.71 | -2.19 | 9.16 | 11.88 | 5099 |
5 | 2.9 | 2.9 | 2.58 | 1.24 | 5.37 | 6.66 | 2856 |
5 | 2.9 | 2.9 | 2.38 | 1.82 | 6.90 | 7.51 | 3222 |
5 | 2.9 | 2.9 | 2.46 | -1.40 | 7.23 | 9.24 | 3965 |
10 | 4.32 | 4.32 | 3.20 | 1.09 | 6.49 | 7.08 | 3039 |
10 | 4.32 | 4.32 | 3.44 | 1.23 | 6.20 | 7.31 | 3135 |
10 | 4.32 | 4.32 | 3.69 | 1.60 | 6.91 | 8.96 | 3843 |
20 | 8.58 | 8.58 | 6.73 | 1.03 | 2.74 | 7.17 | 3077 |
20 | 8.58 | 8.58 | 5.83 | 1.45 | 3.82 | 8.12 | 3483 |
20 | 8.58 | 8.58 | 6.48 | 1.12 | 3.52 | 9.85 | 4225 |
Ω (1/s) | 3% | 5% | 10% | 20% |
---|---|---|---|---|
20 psi | 1695.210 | 1379.880 | 2368.070 | 1325.320 |
30 psi | 3470.530 | 2523.750 | 2152.670 | 1354.960 |
40 psi | 3239.890 | 2524.980 | 2479.220 | 1794.040 |
Ω (1/s) | 3% | 5% | 10% | 20% |
---|---|---|---|---|
20 psi | 739.689 | 623.144 | 624.112 | 593.548 |
30 psi | 696.067 | 653.810 | 588.809 | 617.909 |
40 psi | 984.326 | 1012.160 | 808.438 | 926.641 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlson, B.; Ullah, A.H.; Estevadeordal, J. Experimental Investigation of Vortex-Tube Streamwise-Vorticity Characteristics and Interaction Effects with a Finite-Aspect-Ratio Wing. Fluids 2020, 5, 122. https://doi.org/10.3390/fluids5030122
Carlson B, Ullah AH, Estevadeordal J. Experimental Investigation of Vortex-Tube Streamwise-Vorticity Characteristics and Interaction Effects with a Finite-Aspect-Ratio Wing. Fluids. 2020; 5(3):122. https://doi.org/10.3390/fluids5030122
Chicago/Turabian StyleCarlson, Bailey, Al Habib Ullah, and Jordi Estevadeordal. 2020. "Experimental Investigation of Vortex-Tube Streamwise-Vorticity Characteristics and Interaction Effects with a Finite-Aspect-Ratio Wing" Fluids 5, no. 3: 122. https://doi.org/10.3390/fluids5030122
APA StyleCarlson, B., Ullah, A. H., & Estevadeordal, J. (2020). Experimental Investigation of Vortex-Tube Streamwise-Vorticity Characteristics and Interaction Effects with a Finite-Aspect-Ratio Wing. Fluids, 5(3), 122. https://doi.org/10.3390/fluids5030122