Polymers and Plastrons in Parallel Yield Enhanced Turbulent Drag Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Skin Friction Measurements
2.2. Fabrication of the Superhydrophobic Grooved Surface
2.3. Preparation of Polyacrylamide Solutions
3. Results
3.1. Water + No-Slip Rotor
3.2. Polymer Solution + No-Slip Rotor
3.3. Water + Superhydrophobic Rotor
3.4. Polymer + Superhydrophobic Rotor
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tennekes, H.; Lumley, J.L. A First Course in Turbulence; The MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Stone, P.A.; Waleffe, F.; Graham, M.D. Toward a structural understanding of turbulent drag reduction: Nonlinear coherent states in viscoelastic shear flows. Phys. Rev. Lett. 2002, 89, 208301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, A.; Morozov, A.; van Saarloos, W.; Larson, R.G. Mechanism of polymer drag reduction using a low-dimensional model. Phys. Rev. Lett. 2006, 97, 234501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Adrian, R.J.; Balachandar, S.; Sureshkumar, R. Dynamics of hairpin vortices and polymer-induced turbulent drag reduction. Phys. Rev. Lett. 2008, 100, 134504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, L.; Graham, M.D. Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids. Phys. Rev. Lett. 2010, 104, 218301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, L.; Graham, M.D. Dynamics on the laminar-turbulent boundary and the origin of the maximum drag reduction asymptote. Phys. Rev. Lett. 2012, 108, 028301. [Google Scholar] [CrossRef] [Green Version]
- Martell, M.B.; Rothstein, J.P.; Perot, J.B. An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation. Phys. Fluids 2010, 22, 065102. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Park, H.; Kim, J. A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys. Fluids 2013, 25, 110815. [Google Scholar] [CrossRef] [Green Version]
- Rastegari, A.; Akhavan, R. On the mechanism of turbulent drag reduction with super-hydrophobic surfaces. J. Fluid Mech. 2015, 773, R4. [Google Scholar] [CrossRef]
- Perlin, M.; Dowling, D.R.; Ceccio, S.L. Freeman scholar review: Passive and active skin-friction drag reduction in turbulent boundary layers. J. Fluids Eng. 2016, 138, 091104. [Google Scholar] [CrossRef]
- Graham, M.D. Drag reduction and the dynamics of turbulence in simple and complex fluids. Phys. Fluids 2014, 26, 101301. [Google Scholar] [CrossRef]
- Xi, L. Turbulent drag reduction by polymer additives: Fundamentals and recent advances. Phys. Fluids 2019, 31, 121302. [Google Scholar]
- Hoyt, J.W. The effect of additives on fluid friction. J. Basic Eng. 1972, 94, 258–285. [Google Scholar] [CrossRef]
- Virk, P.S. Drag reduction fundamentals. AIChE J. 1975, 21, 625–656. [Google Scholar] [CrossRef]
- White, C.M.; Mungal, M.G. Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 2008, 40, 235–256. [Google Scholar] [CrossRef]
- Han, W.J.; Choi, H.J. Role of bio-based polymers on improving turbulent flow characteristics: Materials and applications. Polymers 2017, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- Han, W.J.; Dong, Y.Z.; Choi, H.J. Applications of water-soluble polymers in turbulent drag reduction. Processes 2017, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- McHale, G.; Newton, M.I.; Shirtcliffe, N.J. Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties. Soft Matter 2010, 6, 714–719. [Google Scholar] [CrossRef]
- Rothstein, J.P. Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 2010, 42, 89–109. [Google Scholar] [CrossRef]
- Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 2011, 56, 1–108. [Google Scholar] [CrossRef] [Green Version]
- Golovin, K.B.; Gose, J.W.; Perlin, M.; Ceccio, S.L.; Tuteja, A. Bioinspired surfaces for turbulent drag reduction. Phil. Trans. R. Soc. A 2016, 374, 20160189. [Google Scholar] [CrossRef]
- Watanabe, K.; Udagawa, H. Drag reduction of Non-Newtonian fluids in a circular pipe with a highly water-repellent wall. AIChE J. 2001, 47, 256–262. [Google Scholar] [CrossRef]
- Seo, J.; García-Mayoral, R.; Mani, A. Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 2015, 783, 448–473. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Sun, G.; Kim, C.J. Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 2014, 747, 722–734. [Google Scholar] [CrossRef] [Green Version]
- Rajappan, A.; Golovin, K.; Tobelmann, B.; Pillutla, V.; Abhijeet; Choi, W.; Tuteja, A.; McKinley, G.H. Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow. Phys. Fluids 2019, 31, 042107. [Google Scholar] [CrossRef] [Green Version]
- Davis, E.A.; Park, J.S. Turbulence dynamics of dilute polymer solutions: Apparent slip and the effect of slip-inducing surfaces. In Proceedings of the 91st Annual Meeting of the Society of Rheology, Raleigh, NC, USA, 20–24 October 2019. [Google Scholar]
- Srinivasan, S.; Kleingartner, J.A.; Gilbert, J.B.; Cohen, R.E.; Milne, A.J.B.; McKinley, G.H. Sustainable drag reduction in turbulent Taylor-Couette flows by depositing scalable superhydrophobic surfaces. Phys. Rev. Lett. 2015, 114, 014501. [Google Scholar] [CrossRef] [Green Version]
- Rajappan, A.; McKinley, G.H. Epidermal biopolysaccharides from plant seeds enable biodegradable turbulent drag reduction. Sci. Rep. 2019, 9, 18263. [Google Scholar] [CrossRef]
- Panton, R.L. Scaling laws for the angular momentum of a completely turbulent Couette flow. C. R. Acad. Sci. Paris Ser. II 1992, 315, 1467–1473. [Google Scholar]
- Lathrop, D.P.; Fineberg, J.; Swinney, H.L. Transition to shear-driven turbulence in Couette-Taylor flow. Phys. Rev. A 1992, 46, 6390–6405. [Google Scholar] [CrossRef]
- Lewis, G.S.; Swinney, H.L. Velocity structure functions, scaling and transitions in high Reynolds number Couette-Taylor flow. Phys. Rev. E 1999, 59, 5457–5467. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, K.J.; Burkhardt, C.W.; Parazak, D.P. Mark-Houwink-Sakurada constants and dilute solution behavior of heterodisperse poly(acrylamide-co-sodium acrylate) in 0.5 M and 1 M NaCl. J. Appl. Polym. Sci. 1987, 33, 1699–1714. [Google Scholar] [CrossRef]
- Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Buren, T.V.; Smits, A.J. Substantial drag reduction in turbulent flow using liquid-infused surfaces. J. Fluid Mech. 2017, 827, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Philip, J.R. Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 1972, 23, 353–372. [Google Scholar] [CrossRef]
- Min, T.; Kim, J. Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 2004, 16, L55. [Google Scholar] [CrossRef]
- Fairhall, C.T.; García-Mayoral, R. Spectral analysis of the slip-length model for turbulence over textured superhydrophobic surfaces. Flow Turbul. Combust. 2018, 100, 961–978. [Google Scholar] [CrossRef] [Green Version]
- Sbragaglia, M.; Prosperetti, A. A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces. Phys. Fluids 2007, 19, 043603. [Google Scholar] [CrossRef]
- Steinberger, A.; Cottin-Bizonne, C.; Kleimann, P.; Charlaix, E. High friction on a bubble mattress. Nat. Mater. 2007, 6, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.W.; Cao, B.H. Additional reduction of surface tension of aqueous polyethylene oxide (PEO) solution at high polymer concentration. Europhys. Lett. 1993, 24, 229–234. [Google Scholar] [CrossRef]
- Peaudecerf, F.J.; Landel, J.R.; Goldstein, R.E.; Luzzatto-Fegiz, P. Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces. Proc. Natl. Acad. Sci. USA 2017, 114, 7254–7259. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.Y.Z.; Wang, A.T.A.; Hartnett, J.P. Surface tension measurement of aqueous polymer solutions. Exp. Therm. Fluid Sci. 1991, 4, 723–729. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajappan, A.; McKinley, G.H. Polymers and Plastrons in Parallel Yield Enhanced Turbulent Drag Reduction. Fluids 2020, 5, 197. https://doi.org/10.3390/fluids5040197
Rajappan A, McKinley GH. Polymers and Plastrons in Parallel Yield Enhanced Turbulent Drag Reduction. Fluids. 2020; 5(4):197. https://doi.org/10.3390/fluids5040197
Chicago/Turabian StyleRajappan, Anoop, and Gareth H. McKinley. 2020. "Polymers and Plastrons in Parallel Yield Enhanced Turbulent Drag Reduction" Fluids 5, no. 4: 197. https://doi.org/10.3390/fluids5040197
APA StyleRajappan, A., & McKinley, G. H. (2020). Polymers and Plastrons in Parallel Yield Enhanced Turbulent Drag Reduction. Fluids, 5(4), 197. https://doi.org/10.3390/fluids5040197