Numerical Investigation of the Cavitation Effects on the Vortex Shedding from a Hydrofoil with Blunt Trailing Edge
Abstract
:1. Introduction
2. Methods
2.1. Experimental Setup Description
2.2. Governing Equations
2.3. Mesh and Numerical Setup
2.4. Vortex Identification Methods
3. Results
3.1. Validation of the Numerical Simulation
3.2. Vortex Formation Length
3.3. Vortex Shedding Morphology and Dynamic Behavior
4. Conclusions
- Vortices shape: it has been observed that the circular shape of the vortices changes to an elliptical one as they are stretched in the streamwise direction with the development of cavitation.
- Vortices transverse separation: it has been observed that the transverse separation between the upper and lower rows of vortices is reduced with the development of cavitation.
- Vortex formation length: it has been numerically found that the vortex formation length increases by around 83% with the development and growth of cavitation in the wake flow in comparison with the free cavitation condition when the cavitation number is reduced to 40% of the incipient cavitation number.
- Vortex shedding frequency: it has been numerically found that the vortex shedding frequency increases by 14% with the development and growth of cavitation in the wake flow in comparison with the free cavitation condition when the cavitation number is reduced to 40% of the incipient cavitation number.
Author Contributions
Funding
Conflicts of Interest
References
- Arndt, R.E. Cavitation in fluid machinery and hydraulic structures. Annu. Rev. Fluid Mech. 1981, 13, 273–326. [Google Scholar] [CrossRef]
- Franc, J.P.; Michel, J.M. Fundamentals of Cavitation; Springer Science & Business Media: Berlin, Germany, 2006; pp. 1–13, 247–262. [Google Scholar]
- Arndt, R.E. Cavitation in vortical flows. Annu. Rev. Fluid Mech. 2002, 34, 143–175. [Google Scholar] [CrossRef]
- Belahadji, B.; Franc, J.P.; Michel, J.M. Cavitation in the rotational structures of a turbulent wake. J. Fluid Mech. 1995, 287, 383–403. [Google Scholar] [CrossRef]
- Gerrard, J.H. The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech. 1966, 25, 401–413. [Google Scholar] [CrossRef]
- Williamson, C.H. Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 1996, 28, 477–539. [Google Scholar] [CrossRef]
- Kim, J.; Choi, H. Distributed forcing of flow over a circular cylinder. Phys. Fluids 2005, 17, 103–116. [Google Scholar] [CrossRef]
- Roshko, A. On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies; National Aeronautics and Space Administration: Washington, DC, USA, 1954.
- Farhadi, M.; Sedighi, K.; Korayem, A.M. Effect of wall proximity on forced convection in a plane channel with a built-in triangular cylinder. Int. J. Therm. Sci. 2010, 49, 1010–1018. [Google Scholar] [CrossRef]
- Varga, J.; Sebestyen, G.Y. Determination of the frequencies of wakes shedding from circular cylinders. Acta Tech. Acad. Sci. Hung. 1966, 53, 91–108. [Google Scholar]
- Syamala Rao, B.C.; Chandrasekhara, D.V. Some characteristics of cavity flow past cylindrical inducers in a Venturi. J. Fluids Eng. 1976, 98, 461–466. [Google Scholar] [CrossRef]
- Ramamurthy, A.S.; Balachandar, R. Characteristics of constrained cavitating bluff body wakes. J. Eng. Mech. 1991, 117, 513–531. [Google Scholar] [CrossRef]
- Gnanaskandan, A.; Mahesh, K. Numerical investigation of near-wake characteristics of cavitating flow over a circular cylinder. J. Fluid Mech. 2016, 790, 453–491. [Google Scholar] [CrossRef] [Green Version]
- Young, J.O.; Holl, J.W. Effects of cavitation on periodic wakes behind symmetric wedges. J. Fluids Eng. 1966, 88, 163–176. [Google Scholar] [CrossRef]
- Ramamurthy, A.S.; Bhaskaran, P. Constrained flow past cavitating bluff bodies. J. Fluids Eng. 1977, 99, 717–726. [Google Scholar] [CrossRef]
- Deijlen, L.; Bhatt, A.; Ganesh, H.; Wu, J.; Ceccio, S. Cavitation Dynamics in Wakes Behind Bluff Bodies. Bull. Am. Phys. Soc. 2018, 63. [Google Scholar] [CrossRef] [Green Version]
- Gnanaskandan, A.; Mahesh, K. Large eddy simulation of the transition from sheet to cloud cavitation over a wedge. Int. J. Multiph. Flow 2016, 83, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Lee, H.; Choi, H.K.; Rhee, S.H.; Choe, Y.; Kim, H.; Kim, C.; Kim, J.H.; Ahn, B.K.; Kim, H.T. Cavity Dynamics Behind a 2-D Wedge Analyzed by Incompressible and Compressible Flow Solvers. In Proceedings of the 9th International Symposium on Cavitation, Lausanne, Switzerland, 6–10 December 2015. [Google Scholar]
- Balachandar, R.; Ramamurthy, A.S. Pressure distribution in cavitating circular cylinder wakes. J. Eng. Mech. 1999, 125, 356–358. [Google Scholar] [CrossRef]
- Ausoni, P. Turbulent Vortex Shedding from a Blunt Trailing Edge Hydrofoil. Ph.D. Thesis, EPFL, Lausanne, Switzerland, 2009. [Google Scholar]
- Kumar, P.; Chatterjee, D.; Bakshi, S. Experimental investigation of cavitating structures in the near wake of a cylinder. Int. J. Multiph. Flow 2017, 89, 207–217. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, J.H.; Suh, J.C. Further validation of the hybrid particle-mesh method for vortex shedding flow simulations. Int. J. Nav. Archit. Ocean Eng. 2015, 7, 1034–1043. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, Y.J.; Liu, Z.Q. Large eddy simulation of boundary layer transition flow around NACA0009 blunt trailing edge hydrofoil at high Reynolds number. In Proceedings of the 29th IAHR’s Symposium on Hydraulic Machinery and Systems, Kyoto, Japan, 16–21 September 2018. [Google Scholar]
- Kim, J.H.; Jeong, S.W.; Ahn, B.K. Numerical and experimental study on unsteady behavior of cavitating flow around a two-dimensional wedge-shaped body. J. Mar. Sci. Technol. 2019, 24, 1256–1264. [Google Scholar] [CrossRef]
- Cheng, H.; Long, X.; Ji, B.; Peng, X.; Farhat, M. A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas. Int. J. Multiph. Flow 2020, 11, 103–141. [Google Scholar]
- Cheng, H.Y.; Bai, X.R.; Long, X.P.; Ji, B.; Peng, X.X.; Farhat, M. Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence. Appl. Math. Model. 2020, 1, 788–809. [Google Scholar] [CrossRef]
- Arabnejad, M.H.; Amini, A.; Farhat, M.; Bensow, R.E. Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation. Int. J. Multiph. Flow 2019, 1, 123–143. [Google Scholar] [CrossRef]
- Decaix, J.; Balarac, G.; Dreyer, M.; Farhat, M.; Münch, C. RANS and LES computations of the tip-leakage vortex for different gap widths. J. Turbul. 2015, 16, 309–341. [Google Scholar] [CrossRef]
- Trummler, T.; Schmidt, S.J.; Adams, N.A. Investigation of condensation shocks and re-entrant jet dynamics in a cavitating nozzle flow by Large-Eddy Simulation. Int. J. Multiph. Flow 2020, 1, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Budich, B.; Schmidt, S.J.; Adams, N.A. Numerical simulation and analysis of condensation shocks in cavitating flow. J. Fluid Mech. 2018, 10, 759–791. [Google Scholar] [CrossRef]
- Chen, Z.; Adams, N.A. Mode interactions of a high-subsonic deep cavity. Phys. Fluids 2017, 29, 56–82. [Google Scholar] [CrossRef]
- Ghahramani, E.; Jahangir, S.; Neuhauser, M.; Bourgeois, S.; Poelma, C.; Bensow, R.E. Experimental and numerical study of cavitating flow around a surface mounted semi-circular cylinder. Int. J. Multiph. Flow 2020, 9, 191–223. [Google Scholar] [CrossRef]
- Asnaghi, A.; Svennberg, U.; Bensow, R.E. Large Eddy Simulations of cavitating tip vortex flows. Ocean. Eng. 2020, 195, 106–133. [Google Scholar] [CrossRef]
- Asnaghi, A.; Feymark, A.; Bensow, R.E. Numerical investigation of the impact of computational resolution on shedding cavity structures. Int. J. Multiph. Flow 2018, 10, 33–50. [Google Scholar] [CrossRef]
- Schenke, S.; van Terwisga, T. Simulating compressibility in cavitating flows with an incompressible mass transfer flow solver. In Proceedings of the Fifth International Symposium on Marine Propulsors, Espoo, Finland, 12–15 June 2017. [Google Scholar]
- Brunhart, M.; Soteriou, C.; Gavaises, M.; Karathanassis, I.; Koukouvinis, P.; Jahangir, S.; Poelma, C. Investigation of cavitation and vapor shedding mechanisms in a Venturi nozzle. Phys. Fluids. 2020, 32, 83–106. [Google Scholar] [CrossRef]
- Cristofaro, M.; Edelbauer, W.; Koukouvinis, P.; Gavaises, M. A numerical study on the effect of cavitation erosion in a diesel injector. Appl. Math. Model. 2020, 2, 200–216. [Google Scholar] [CrossRef]
- Mithun, M.G.; Koukouvinis, P.; Gavaises, M. Numerical simulation of cavitation and atomization using a fully compressible three-phase model. Phys. Rev. Fluids. 2018, 3, 64–87. [Google Scholar] [CrossRef] [Green Version]
- Epps, B. Review of vortex identification methods. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Saffman, P.G. Vortex Dynamics; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Hunt, J.C.; Wray, A.A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the 1988 Summer Program, Standford, CA, USA, 1 December 1988. [Google Scholar]
- Chong, M.S.; Perry, A.E.; Cantwell, B.J. A general classification of three-dimensional flow fields. Phys. Fluids A Fluid Dyn. 1990, 2, 765–777. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Xian, H.; Du, X. A review of methods for vortex identification in hydroturbines. Renew. Sustain. Energy Rev. 2018, 81, 1269–1285. [Google Scholar] [CrossRef]
- Brown, G.L.; Roshko, A. On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 1974, 64, 775–816. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.K. Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 1991, 23, 601–639. [Google Scholar] [CrossRef]
- Haller, G. Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos Interdiscip. J. Nonlinear Sci. 2000, 10, 99–108. [Google Scholar] [CrossRef]
- Haller, G. Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys. D Nonlinear Phenom. 2001, 149, 248–277. [Google Scholar] [CrossRef] [Green Version]
- Shadden, S.C.; Dabiri, J.O.; Marsden, J.E. Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids 2006, 18, 047105. [Google Scholar] [CrossRef] [Green Version]
- O’Farrell, C.; Dabiri, J.O. A Lagrangian approach to identifying vortex pinch-off. Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 017513. [Google Scholar] [CrossRef] [Green Version]
- O’Farrell, C.; Dabiri, J.O. Pinch-off of non-axisymmetric vortex rings. J. Fluid Mech. 2014, 740, 61–96. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Rowley, C.W.; Smits, A.J. The unsteady three-dimensional wake produced by a trapezoidal pitching panel. J. Fluid Mech. 2011, 685, 117–145. [Google Scholar] [CrossRef] [Green Version]
- Rockwood, M.P.; Taira, K.; Green, M.A. Detecting vortex formation and shedding in cylinder wakes using Lagrangian coherent structures. AIAA J. 2017, 55, 15–23. [Google Scholar] [CrossRef]
- Eldredge, J.D.; Chong, K. Fluid transport and coherent structures of translating and flapping wings. Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 017509. [Google Scholar] [CrossRef] [PubMed]
- Rukes, L.; Sieber, M.; Oliver Pashereit, C.; Oberleithner, K. Methods for the extraction and analysis of the global mode in swirling jets undergoing vortex breakdown. J. Eng. Gas Turbines Power 2017, 139, 022604. [Google Scholar] [CrossRef]
- Sadlo, F.; Peikert, R. Visualizing lagrangian coherent structures and comparison to vector field topology. In Topology-Based Methods in Visualization II; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Beron-Vera, F.J.; Olascoaga, M.J.; Goni, G.J. Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophys. Res. Lett. 2008, 35. [CrossRef]
- Du Toit, P.C.; Marsden, J.E. Horseshoes in hurricanes. J. Fixed Point Theory Appl. 2010, 7, 351–384. [Google Scholar] [CrossRef]
- Haller, G. Lagrangian coherent structures. Annu. Rev. Fluid Mech. 2015, 47, 137–162. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.C.; Liu, P.B. Dynamic behaviors of the turbulent cavitating flows based on the Eulerian and Lagrangian viewpoints. Int. J. Heat Mass Transf. 2016, 102, 479–500. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, B.; Zhang, M.; Wang, G.; Ji, B. Numerical investigation of ventilated cavitating vortex shedding over a bluff body. Ocean Eng. 2018, 159, 129–138. [Google Scholar] [CrossRef]
- Zwart, P.J.; Gerber, G.; Belamri, T. A two-phase flow model for prediction cavitation dynamics. In Proceedings of the 5th International Conference Multiphase Flow (ICMF 2004), Yokohama, Japan, 30 May–4 June 2004. [Google Scholar]
- Nicoud, F.; Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather. Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Ait Bouziad, Y. Physical Modelling of Leading Edge Cavitation: Computational Methodologies and Application to Hydraulic Machinery. Ph.D. Thesis, EPFL, Lausanne, Switzerland, 2005. [Google Scholar]
- Griffin, O.M. A note on bluff body vortex formation. J. Fluid Mech. 1995, 284, 217–224. [Google Scholar] [CrossRef]
Name | Number of Elements | Max y+ [–] | Resolution in Near Wake [mm] | Outlet Boundary Location | Shedding Frequency [Hz] | St [–] | Deviation [%] |
---|---|---|---|---|---|---|---|
MC | 29525 | 3.5 | 0.6 | 3C | 1550 | 0.250 | 10.7 |
MM | 49420 | 2.8 | 0.4 | 3C | 1500 | 0.242 | 7.1 |
MF_1 | 71200 | 2.8 | 0.2 | 3C | 1450 | 0.233 | 3.6 |
MF_2 | 313790 | 0.38 | 0.2 | 6C | 1450 | 0.233 | 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Geng, L.; Escaler, X. Numerical Investigation of the Cavitation Effects on the Vortex Shedding from a Hydrofoil with Blunt Trailing Edge. Fluids 2020, 5, 218. https://doi.org/10.3390/fluids5040218
Chen J, Geng L, Escaler X. Numerical Investigation of the Cavitation Effects on the Vortex Shedding from a Hydrofoil with Blunt Trailing Edge. Fluids. 2020; 5(4):218. https://doi.org/10.3390/fluids5040218
Chicago/Turabian StyleChen, Jian, Linlin Geng, and Xavier Escaler. 2020. "Numerical Investigation of the Cavitation Effects on the Vortex Shedding from a Hydrofoil with Blunt Trailing Edge" Fluids 5, no. 4: 218. https://doi.org/10.3390/fluids5040218
APA StyleChen, J., Geng, L., & Escaler, X. (2020). Numerical Investigation of the Cavitation Effects on the Vortex Shedding from a Hydrofoil with Blunt Trailing Edge. Fluids, 5(4), 218. https://doi.org/10.3390/fluids5040218