Onset of Inertial Magnetoconvection in Rotating Fluid Spheres
Abstract
:1. Introduction
2. Mathematical Formulation of the Problem
3. Perturbation Analysis Results
3.1. Zeroth-Order Approximation
3.2. First-Order Approximation
3.2.1. Explicit Expressions in the Limit
3.2.2. Solution of the Heat Equation in the General Case
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, C.A. Planetary Magnetic Fields and Fluid Dynamos. Annu. Rev. Fluid Mech. 2011, 43, 583–614. [Google Scholar] [CrossRef] [Green Version]
- Roberts, P.H.; King, E.M. On the genesis of the Earth’s magnetism. Rep. Prog. Phys. 2013, 76, 096801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charbonneau, P. Solar Dynamo Theory. Annu. Rev. Astron. Astrophys. 2014, 52, 251–290. [Google Scholar] [CrossRef] [Green Version]
- Ogilvie, G.I. Astrophysical fluid dynamics. J. Plasma Phys. 2016, 82, 205820301. [Google Scholar] [CrossRef] [Green Version]
- Glatzmaier, G.A. Geodynamo Simulations—How Realistic Are They? Annu. Rev. Earth Planet. Sci. 2002, 30, 237–257. [Google Scholar] [CrossRef] [Green Version]
- Miesch, M.; Matthaeus, W.; Brandenburg, A.; Petrosyan, A.; Pouquet, A.; Cambon, C.; Jenko, F.; Uzdensky, D.; Stone, J.; Tobias, S.; et al. Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics. Space Sci. Rev. 2015, 194, 97–137. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; International Series of Monographs on Physics; Clarendon Press: Oxford, UK, 1961. [Google Scholar]
- Zhang, K.; Schubert, G. Magnetohydrodynamics in Rapidly Rotating spherical Systems. Annu. Rev. Fluid Mech. 2000, 32, 409–443. [Google Scholar] [CrossRef]
- Weiss, N.O.; Proctor, M.R.E. Magnetoconvection; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Hide, R. Free Hydromagnetic Oscillations of the Earth’s Core and the Theory of the Geomagnetic Secular Variation. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 1966, 259, 615–647. [Google Scholar] [CrossRef]
- Malkus, W.V.R. Hydromagnetic planetary waves. J. Fluid Mech. 1967, 28, 793–802. [Google Scholar] [CrossRef]
- Finlay, C.C.; Dumberry, M.; Chulliat, A.; Pais, M.A. Short Timescale Core Dynamics: Theory and Observations. Space Sci. Rev. 2010, 155, 177–218. [Google Scholar] [CrossRef]
- Hori, K.; Takehiro, S.; Shimizu, H. Waves and linear stability of magnetoconvection in a rotating cylindrical annulus. Phys. Earth Planet. Inter. 2014, 236, 16–35. [Google Scholar] [CrossRef]
- Hori, K.; Jones, C.A.; Teed, R.J. Slow magnetic Rossby waves in the Earth’s core. Geophys. Res. Lett. 2015, 42, 6622–6629. [Google Scholar] [CrossRef]
- Busse, F.H. Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 1970, 44, 441. [Google Scholar] [CrossRef]
- Busse, F.H. Asymptotic theory of convection in a rotating, cylindrical annulus. J. Fluid Mech. 1986, 173, 545. [Google Scholar] [CrossRef]
- Simitev, R.; Busse, F. Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells. J. Fluid Mech. 2005, 532, 365. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.K.; Busse, F.H. On the onset of convection in rotating spherical shells. Geophys. Astrophys. Fluid Dyn. 1987, 39, 119–147. [Google Scholar] [CrossRef]
- Ardes, M.; Busse, F.; Wicht, J. Thermal convection in rotating spherical shells. Phys. Earth Planet. Int. 1997, 99, 55–67. [Google Scholar] [CrossRef]
- Simitev, R.; Busse, F. Patterns of convection in rotating spherical shells. New J. Phys. 2003, 5, 97. [Google Scholar] [CrossRef]
- Plaut, E.; Busse, F.H. Multicellular convection in rotating annuli. J. Fluid Mech. 2005, 528, 119–133. [Google Scholar] [CrossRef]
- Zhang, K. On coupling between the Poincaré equation and the heat equation. J. Fluid Mech. 1994, 268, 211–229. [Google Scholar] [CrossRef]
- Zhang, K. On coupling between the Poincaré equation and the heat equation: Non-slip boundary condition. J. Fluid Mech. 1995, 284, 239–256. [Google Scholar] [CrossRef]
- Zhang, K.; Liao, X. Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession; Cambridge Monographs on Mechanics, Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Zhang, K.; Busse, F.H. On hydromagnetic instabilities driven by the Hartmann boundary layer in a rapidly rotating sphere. J. Fluid Mech. 1995, 304, 263–283. [Google Scholar] [CrossRef]
- Busse, F.H.; Simitev, R. Inertial convection in rotating fluid spheres. J. Fluid Mech. 2004, 498, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Earnshaw, P.; Liao, X.; Busse, F.H. On inertial waves in a rotating fluid sphere. J. Fluid Mech. 2001, 437, 103–119. [Google Scholar] [CrossRef]
- Eltayeb, I.A.; Kumar, S.; Hide, R. Hydromagnetic convective instability of a rotating, self-gravitating fluid sphere containing a uniform distribution of heat sources. Proc. R. Soc. Lond. A 1977, 353, 145–162. [Google Scholar] [CrossRef]
- Fearn, D.R. Thermally driven hydromagnetic convection in a rapidly rotating sphere. Proc. R. Soc. Lond. A 1979, 369, 227–242. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simitev, R.D.; Busse, F.H. Onset of Inertial Magnetoconvection in Rotating Fluid Spheres. Fluids 2021, 6, 41. https://doi.org/10.3390/fluids6010041
Simitev RD, Busse FH. Onset of Inertial Magnetoconvection in Rotating Fluid Spheres. Fluids. 2021; 6(1):41. https://doi.org/10.3390/fluids6010041
Chicago/Turabian StyleSimitev, Radostin D., and Friedrich H. Busse. 2021. "Onset of Inertial Magnetoconvection in Rotating Fluid Spheres" Fluids 6, no. 1: 41. https://doi.org/10.3390/fluids6010041
APA StyleSimitev, R. D., & Busse, F. H. (2021). Onset of Inertial Magnetoconvection in Rotating Fluid Spheres. Fluids, 6(1), 41. https://doi.org/10.3390/fluids6010041