Diffusive Mass Transfer and Gaussian Pressure Transient Solutions for Porous Media
Abstract
:1. Introduction
2. Diffusive Mass Transports
2.1. Diffusion in Various Dimensions
2.2. Scaling the Initial Mass Concentration
2.3. Using Regular Probability versus Ascending and Descending Cumulatives
3. Advective Mass Transports Due to Pressure Gradients
3.1. Current Practice in Reservoir Modeling
3.2. Gaussian Pressure Transient Solution
- For , use ;
- For , use ;
- For , use .
3.3. Engineering-Induced Pressure Depletion in Reservoirs
4. Discussion
4.1. Comparison of Gaussian Pressure Transients
4.2. Merging Gaussian and Complex Analysis Methods (CAM)
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Dharodi, V.; Das, A. A numerical study of gravity-driven instability in strongly coupled dusty plasma. Part 1. Rayleigh–Taylor instability and buoyancy-driven instability. J. Plasma Phys. 2021, 87, 905870216. [Google Scholar] [CrossRef]
- Turcotte, D.L.; Schubert, G. Geodynamics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Drazin, P.G.; Reid, W.H. Hydrodynamic Stability; Cambridge University Press: Cambridge, UK, 1991; ISBN 0-521-28980-7. [Google Scholar]
- Huysmans, M.; Dassargues, A. Review of the use of Péclet numbers to determine the relative importance of advection and diffusion in low permeability environments. Hydrogeol. J. 2005, 13, 895–904. [Google Scholar] [CrossRef] [Green Version]
- Rapp, B. Microfluidics: Modeling, Mechanics and Mathematics; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Weijermars, R.; Schmeling, H. Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity). Phys. Earth Planet. Inter. 1986, 43, 316–330. [Google Scholar] [CrossRef]
- Weijermars, R. Convection experiments in high Prandtl number silicones, Part 1: Rheology, equipment, nomograms and dynamic scaling of stress- and temperature-dependent convection in a centrifuge. Tectonophysics 1988, 154, 71–96. [Google Scholar] [CrossRef]
- Weijermars, R. Convection experiments in high Prandtl number silicones, Part 2: Deformation, displacement and mixing in the Earth’s mantle. Tectonophysics 1988, 154, 97–123. [Google Scholar] [CrossRef]
- Weijermars, R. Experimental pictures of deformation patterns in a possible model of the Earth’s interior. Earth Planet. Sci. Lett. 1989, 91, 367–373. [Google Scholar] [CrossRef]
- Weijermars, R.; van Harmelen, A.; Zuo, L. Controlling flood displacement fronts using a parallel analytical streamline simulator. J. Pet. Sci. Eng. 2016, 139, 23–42. [Google Scholar] [CrossRef]
- Weijermars, R.; Dooley, T.P.; Jackson, M.P.A.; Hudec, M.R. Rankine models for time-dependent gravity spreading of terrestrial source flows over sub-planar slopes. J. Geophys. Res. 2014, 119, 7353–7388. [Google Scholar] [CrossRef] [Green Version]
- Fourier, J.B. Theorie Analytique de la Chaleur; English translation by Freeman, A.; Dover Publications: New York, NY, USA, 1955. [Google Scholar]
- Fick, A. Ueber diffusion. Ann. Der Phys. 1855, 170, 59–86. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Clarendon Press: Oxford, UK, 1959. [Google Scholar]
- Crank, J. The Mathematics of Diffusion, 1st ed.; Clarendon Press: Oxford, UK, 1956. [Google Scholar]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Risken, H. The fokker-planck equation. In Methods of Solution and Applications, 2nd ed.; 3rd printing; Springer: Cham, Switzerland, 1996. [Google Scholar]
- Hanna, S.R.; Briggs, G.A.; Hosker, R.P., Jr. Handbook on Atmospheric Diffusion; U.S. Department of Energy: Washington, DC, USA, 1982.
- Mullins, O.C. Reservoir Fluid Geodynamics and Reservoir Evaluation. Schlumberger. 2019. Available online: https://www.slb.com/resource-library/book/reservoir-fluid-geodynamics-and-reservoir-evaluation (accessed on 10 October 2021).
- Raghavan, R. Well Test Analysis; Prentice Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Cinco-Ley, H.; Samaniego, V.-F. Transient Pressure Analysis for Fractured Wells. J. Pet. Technol. 1981, 33, 1749–1766. [Google Scholar] [CrossRef]
- Stewart, G. Well Test Design and Analysis; PennWell Books: Nashville, TN, USA, 2011. [Google Scholar]
- Slotte, P.A.; Berg, C.F. Lecture Notes in Well-Testing. 2020. Available online: https://folk.ntnu.no/perarnsl/Literatur/lecture_notes.pdf (accessed on 10 October 2021).
- Vasco, D.W.; Keers, H.; Karasaki, K. Estimation of reservoir properties using transient pressure data: An asymptotic approach. Water Resour. Res. 2000, 36, 3447–3465. [Google Scholar] [CrossRef]
- King, M.J.; Wang, Z.; Datta-Gupta, A. Asymptotic solutions of the diffusivity equation and their applications. In Proceedings of the SPE Europec Featured at the 78th EAGE Conference and Exhibition, Vienna, Austria, 30 May–2 June 2016. [Google Scholar] [CrossRef]
- Malone, A.; King, M.J.; Wang, Z. Characterization of multiple transverse fracture wells using the asymptotic approximation of the diffusivity equation. In Proceedings of the SPE Europec featured at the 81st EAGE Conference and Exhibition, London, UK, 3–6 June 2019. [Google Scholar] [CrossRef]
- Nandlal, K.; Li, C.; Liu, C.-S.; Chavali, V.B.K.; King, M.J.; Weijermars, R. Understanding field performance of hydraulically fractured wells: Comparison of pressure front versus tracer front propagation using the Fast Marching Method (FMM) and Complex Analysis Method (CAM). In Proceedings of the Unconventional Resources Technology Conference, Austin, TX, USA, 20–22 July 2020. URTeC: 2020-2474. [Google Scholar]
- Wang, J.; Weijermars, R. Stress anisotropy changes near hydraulically fractured wells due to production-induced pressure deletion. In Proceedings of the ARMA International 2nd International Geomechanics Symposium, Dhahran, Saudi Arabia, 1–3 November 2021. KSA. ARMA-INT-21-109. [Google Scholar]
- Weijermars, R. Improving Well productivity—Ways to reduce the lag between the diffusive and convective time of flight in shale wells. J. Pet. Sci. Eng. 2020, 193, 107344. [Google Scholar] [CrossRef]
- Weijermars, R.; Alves, I.N. High-resolution visualization of flow velocities near frac-tips and flow interference of multi-fracked Eagle Ford wells, Brazos County, Texas. J. Pet. Sci. Eng. 2018, 165, 946–961. [Google Scholar] [CrossRef]
- Jelmert, T.A. Introductory Well Testing. Bookboon. 2013. Available online: https://vdoc.pub/download/introductory-well-testing-m2nre1i962o0 (accessed on 16 October 2021).
- Thambynayagam, R.K.M. The Diffusion Handbook. Applied Solutions for Engineers; McGrawHill: New York, NY, USA, 2011. [Google Scholar]
- Weijermars, R.; Nandlal, K.; Khanal, A.; Tugan, M.F. Comparison of pressure front with tracer front advance and principal flow regimes in hydraulically fractured wells in unconventional reservoirs. J. Pet. Sci. Eng. 2019, 183, 106407. [Google Scholar] [CrossRef]
- Weijermars, R.; Tugan, M.F.; Khanal, A. Production rates and EUR forecasts for interfering parent-parent wells and parent-child wells: Fast analytical solutions and validation with numerical reservoir simulators. J. Pet. Sci. Eng. 2020, 190, 107032. [Google Scholar] [CrossRef]
- Parsegov, S.G.; Nandlal, K.; Schechter, D.S.; Weijermars, R. Physics-driven optimization of drained rock volume for multistage fracturing: Field example from the wolfcamp formation, midland basin. SPE-URTeC: 2879159. In Proceedings of the Unconventional Resources Technology Conference, Houston, TX, USA, 23–25 July 2018. [Google Scholar] [CrossRef] [Green Version]
- Zhdanov, V.M. Barodiffusion in Slow Flows of a Gas Mixture. Tech. Phys. 2019, 64, 596–605. [Google Scholar] [CrossRef]
- Eslamian, M. Advances in thermodiffusion and thermoporesis (Soret effect) in liquid mixtures. Front. Heat Mass Transf. (FHMT) 2011, 2, 043001. [Google Scholar] [CrossRef] [Green Version]
- Khanal, A.; Weijermars, R. Comparison of flow solutions for naturally fractured reservoirs using Complex Analysis Methods (CAM) and Embedded Discrete Fracture Models (EDFM): Fundamental design differences and improved scaling method. Geofluids 2020, 2020, 8838540. [Google Scholar] [CrossRef]
Quantity | Symbol | Value | Units |
---|---|---|---|
Porosity | 0.06 | - | |
Permeability | 5 × 10−7 | Darcy | |
Viscosity | μ | 0.001 | Pa∙s |
Compressibility | 0.002175 | MPa−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weijermars, R. Diffusive Mass Transfer and Gaussian Pressure Transient Solutions for Porous Media. Fluids 2021, 6, 379. https://doi.org/10.3390/fluids6110379
Weijermars R. Diffusive Mass Transfer and Gaussian Pressure Transient Solutions for Porous Media. Fluids. 2021; 6(11):379. https://doi.org/10.3390/fluids6110379
Chicago/Turabian StyleWeijermars, Ruud. 2021. "Diffusive Mass Transfer and Gaussian Pressure Transient Solutions for Porous Media" Fluids 6, no. 11: 379. https://doi.org/10.3390/fluids6110379
APA StyleWeijermars, R. (2021). Diffusive Mass Transfer and Gaussian Pressure Transient Solutions for Porous Media. Fluids, 6(11), 379. https://doi.org/10.3390/fluids6110379