Spectral Early-Warning Signals for Sudden Changes in Time-Dependent Flow Patterns
Abstract
:1. Introduction
2. Background on Non-Autonomous Dynamics and Coherent Sets
2.1. Non-Autonomous Dynamical Systems
2.2. Coherent Sets
- (i)
- Maximizing the coherence ratio r as given in (2),
- (ii)
- Robustness under external perturbations,
- (iii)
- Closeness to a critical point or orbit that changes stability (this is crucial for setting up set-oriented analogues to finite-time bifurcations),
- (iv)
- Minimization of the surface-to-volume ratio (in conservative flows).
2.3. Set-Oriented Framework
2.4. Singular Vectors and Coherent Partitions
2.5. Changes in Spectrum and Flow Patterns
- By construction, coherent sets are also characterized by minimizing diffusive transport, and this puts constraints on their shape [8,9]. Coherent sets that have a long boundary compared to volume would be less coherent than those of the same volume with a smaller boundary. Thus, when a coherent set is reshaped, e.g., from a ball to an ellipse of the same volume, we would expect a decrease in the corresponding singular value. This is due to the fact that the singular value directly enters the upper (and also lower) bounds on the coherence ratio.
- For the same reason, the size of a coherent set influences its coherence ratio, since this is a relative quantity. Large coherent sets are, in general, more coherent than smaller ones, as diffusive transport affects larger parts of the latter. Thus, when a coherent set grows in size, we would expect an increase in the corresponding singular value.
- Finally, when a coherent pattern becomes more dominant, e.g., when a coherent set splits, this might change the relative order of coherent patterns in terms of their coherent ratios. In this case, we would expect a crossing of the corresponding singular values, as also observed in [23]. For the related case of almost-invariant sets in autonomous dynamical systems, this has been studied in [19,20,21,22]. Computational approaches for the detection of singular value crossings are proposed in [23].
3. Studying Bifurcations of Coherent Sets and Early-Warning Signals
3.1. Spectral Signatures of a Finite-Time Bifurcation in One Dimension
3.2. Spectral Signatures for Transitions in a Transitory Double Gyre Flow
3.3. Early-Warning Signals for a Vortex Splitting Regime
4. Spectral Study of the Sudden Antarctic Polar Vortex Split of September 2002 from Recorded Satellite Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. One-Dimensional Toy Model
References
- Scheffer, M. Critical Transitions in Nature and Society; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Scheffer, M.; Bascompte, J.; Brock, W.A.; Brovkin, V.; Carpenter, S.R.; Dakos, V.; Held, H.; van Nes, E.H.; Rietkerk, M.; Sugihara, G. Early-warning signals for critical transitions. Nature 2003, 461, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Sornette, D. Predictability of catastrophic events: Material rupture, earthquakes, turbulence, financial crashes and human birth. Proc. Natl. Acad. Sci. USA 2002, 99, 2522–2529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allshouse, M.R.; Peacock, T. Lagrangian based methods for coherent structure detection. Chaos 2015, 25, 097617. [Google Scholar] [CrossRef]
- Haller, G. Lagrangian coherent structures. Ann. Rev. Fluid Mech. 2015, 47, 137–162. [Google Scholar] [CrossRef] [Green Version]
- Hadjighasem, A.; Farazmand, M.; Blazevski, D.; Froyland, G.; Haller, G. A critical comparison of Lagrangian methods for coherent structure detection. Chaos 2017, 27, 053104. [Google Scholar] [CrossRef] [PubMed]
- Froyland, G.; Santitissadeekorn, N.; Monahan, A. Transport in time-dependent dynamical systems: Finite-time coherent sets. Chaos 2010, 20, 043116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froyland, G. An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems. Physica D 2013, 250, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Froyland, G. Dynamic isoperimetry and the geometry of Lagrangian coherent structures. Nonlinearity 2015, 28, 3587. [Google Scholar] [CrossRef]
- Karrasch, D.; Keller, J. A geometric heat-flow theory of Lagrangian coherent structures. J. Nonlinear Sci. 2020, 30, 1849. [Google Scholar] [CrossRef]
- Dellnitz, M.; Junge, O. On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 1999, 36, 491–515. [Google Scholar] [CrossRef]
- Froyland, G.; Padberg-Gehle, K. Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion. In Ergodic Theory, Open Dynamics, and Coherent Structures; Bahsoun, W., Bose, C., Froyland, G., Eds.; Springer: Berlin, Germany, 2014; pp. 171–216. [Google Scholar]
- Lasota, A.; Mackey, M.C. Chaos, Fractals and Noise; Springer: Berlin, Germany, 1994. [Google Scholar]
- Dellnitz, M.; Froyland, G.; Junge, O. The algorithms behind GAIO: Set-oriented numerical methods for dynamical systems. In Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems; Fiedler, B., Ed.; Springer: Berlin, Germany, 2001; pp. 145–174. [Google Scholar]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Dianconescu, E.P.; Laprise, R. Singular vectors in atmospheric sciences: A review. Earth-Sci. Rev. 2012, 113, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Gaspard, P.; Nicolis, G.; Provata, A.; Tasaki, S. Spectral signature of the pitchfork bifurcation: Liouville equation approach. Phys. Rev. E 1995, 51, 74–94. [Google Scholar] [CrossRef] [PubMed]
- Tantet, A.; van der Burgt, F.R.; Dijkstra, H.A. An early warning indicator for atmospheric blocking events using transfer operators. Chaos 2015, 25, 036406. [Google Scholar] [CrossRef] [PubMed]
- Junge, O.; Marsden, J.E.; Mezic, I. Uncertainty in the dynamics of conservative maps. Proc. IEEE Conf. Decis. Control. (CDC 2004) 2014, 2, 2225–2230. [Google Scholar]
- Grover, P.; Ross, S.D.; Stremler, M.A.; Kumar, P. Topological chaos, braiding and bifurcation of almost-cyclic sets. Chaos 2012, 22, 043135. [Google Scholar] [CrossRef] [Green Version]
- Ndour, M.; Padberg-Gehle, K. Predicting bifurcations of almost-invariant patterns: A set-oriented approach. arXiv 2020, arXiv:2001.01099. [Google Scholar]
- Ndour, M. Early Warning Signals for Sudden Changes in Dynamical Flow Patterns. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2020. [Google Scholar]
- Blachut, C.; González-Tokman, C. A tale of two vortices: How numerical ergodic theory and transfer operators reveal fundamental changes to coherent structures in non-autonomous dynamical systems. J. Comput. Dyn. 2020, 7, 369–399. [Google Scholar] [CrossRef]
- Rasmussen, M. Attractivity and Bifurcation for Nonautonomous Dynamical Systems; Lecture Notes in Mathematics 1907; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Kloeden, P.E.; Rasmussen, M. Nonautonomous Dynamical Systems; American Mathematical Society: Providence, RI, USA, 2011. [Google Scholar]
- Denner, A. Coherent Structures and Transfer Operators. Ph.D. Thesis, Technische Universität München, München, Germany, 2017. [Google Scholar]
- Froyland, G.; Dellnitz, M. Detecting and locating near-optimal almost-invariant sets and cycles. SIAM J. Sci. Comput. 2003, 24, 1839–1863. [Google Scholar] [CrossRef] [Green Version]
- Ulam, S.M. A Collection of Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
- Froyland, G.; Rock, C.P.; Sakellariou, K. Sparse eigenbasis approximation: Multiple feature extraction across spatiotemporal scales with application to coherent set identification. Commun. Nonlinear Sci. Numer. Simulat. 2019, 77, 81–107. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.D. Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev. 1989, 31, 240–272. [Google Scholar] [CrossRef]
- Deuflhard, P.; Huisinga, W.; Fischer, A.; Schütte, C. Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Linear Algebra Appl. 2000, 315, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Klünker, A.; Padberg-Gehle, K. Robustness of coherent sets computations. In Proceedings of the 9th European Nonlinear Dynamics Conference, Budapest, Hungary, 25–30 June 2017; Stépán, G., Csernák, G., Eds.; Congressline Ltd.: Budapest, Hungary, 2017; p. 493. [Google Scholar]
- Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer: New York, NY, USA, 1983. [Google Scholar]
- Rasmussen, M. Finite-time attractivity and bifurcation for nonautonomous differential equations. Differ. Equ. Dyn. Syst. 2010, 18, 57–78. [Google Scholar] [CrossRef]
- Simmons, A.; Hortal, M.; Kelly, G.; McNally, A.; Untch, A.; Uppala, S. ECMWF analyses and forecasts of stratospheric winter polar vortex break up: September 2002 in the Southern Hemisphere and related events. J. Atmos. Sci. 2005, 62, 668–689. [Google Scholar] [CrossRef]
- Ricaud, P.; Lefèvre, F.; Berthet, G.; Murtagh, D.; Llewellyn, E.J.; Mégie, G.; Kyrölä, E.; Leppelmeier, G.W.; Vinen, H.; Boonne, C.; et al. Polar vortex evolution during the 2002 Antarctic major warming as observed by the Odin satellite. J. Geophys. Res. 2005, 110, D05302. [Google Scholar] [CrossRef] [Green Version]
- Charlton, A.J.; O’Neill, A.; Lahoz, W.A.; Berrisford, P. The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution. J. Atmos. Sci. 2005, 62, 590–602. [Google Scholar] [CrossRef]
- Lekien, F.; Ross, S.D. The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos 2010, 20, 017505. [Google Scholar] [CrossRef] [Green Version]
- Joseph, B.; Legras, B. Boundaries, stirring, and barriers for the Antarctic polar vortex. J. Atmos. Sci. 2002, 59, 1198–1212. [Google Scholar] [CrossRef] [Green Version]
- Schütte, C.; Huisinga, W.; Deuflhard, P. Transfer Operator Approach to Conformational Dynamics in Biomolecular Systems. In Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems; Fiedler, B., Ed.; Springer: Berlin, Germany, 2001; pp. 191–223. [Google Scholar]
- Chekroun, M.D.; Neelin, J.D.; Kondrashov, D.; McWilliams, J.C.; Ghil, M. Rough parameter dependence in climate models and the role of the Ruelle-Pollicott resonances. Proc. Natl. Acad. Sci. USA 2014, 111, 1684–1690. [Google Scholar] [CrossRef] [Green Version]
- Crommelin, D. Regime transition and heteroclinic connections in a barotropic atmosphere. J. Atmos. Sci. 2003, 60, 229–246. [Google Scholar] [CrossRef]
- Hadjighasem, A.; Karrasch, D.; Teramoto, H.; Haller, G. Spectral-clustering approach to Lagrangian vortex detection. Phys. Rev. E 2016, 93, 063107. [Google Scholar] [CrossRef] [Green Version]
- Banisch, R.; Koltai, P. Understanding the geometry of transport: Diffusion maps for Lagrangian trajectory data unravel coherent sets. Chaos 2017, 27, 035804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlueter-Kuck, K.L.; Dabiri, J.O. Coherent structure colouring: Identification of coherent structures from sparse data using graph theory. J. Fluid Mech. 2017, 811, 468–486. [Google Scholar] [CrossRef] [Green Version]
- Padberg-Gehle, K.; Schneide, C. Network-based study of Lagrangian transport and mixing. Nonlinear Process. Geophys. 2017, 24, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Froyland, G.; Junge, O. Robust FEM-based extraction of finite-time coherent sets using scattered, sparse, and incomplete trajectories. SIAM J. Appl. Dyn. Syst. 2018, 17, 1891–1924. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndour, M.; Padberg-Gehle, K.; Rasmussen, M. Spectral Early-Warning Signals for Sudden Changes in Time-Dependent Flow Patterns. Fluids 2021, 6, 49. https://doi.org/10.3390/fluids6020049
Ndour M, Padberg-Gehle K, Rasmussen M. Spectral Early-Warning Signals for Sudden Changes in Time-Dependent Flow Patterns. Fluids. 2021; 6(2):49. https://doi.org/10.3390/fluids6020049
Chicago/Turabian StyleNdour, Moussa, Kathrin Padberg-Gehle, and Martin Rasmussen. 2021. "Spectral Early-Warning Signals for Sudden Changes in Time-Dependent Flow Patterns" Fluids 6, no. 2: 49. https://doi.org/10.3390/fluids6020049
APA StyleNdour, M., Padberg-Gehle, K., & Rasmussen, M. (2021). Spectral Early-Warning Signals for Sudden Changes in Time-Dependent Flow Patterns. Fluids, 6(2), 49. https://doi.org/10.3390/fluids6020049