The Tailored CFD Package ‘containmentFOAM’ for Analysis of Containment Atmosphere Mixing, H2/CO Mitigation and Aerosol Transport
Abstract
:1. Background and Motivation
2. The containmentFOAM Package
2.1. Solver and Numerical Methods
2.2. Model Library
2.2.1. Turbulence Transport in Buoyancy Affected Flows
2.2.2. Multi-Species Transport
2.2.3. Wall Treatment and Condensation
2.2.4. Radiative Heat Transfer
2.2.5. Aerosol Transport and Decay Heat Distribution
2.2.6. Safety Systems
3. Verification and Validation
3.1. Overview
3.2. Validation Case: PAR Operation under Accidental Conditions
4. Dissemination
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelm, S.; Müller, H.; Allelein, H.-J. A Review of the CFD Modeling Progress T briggered by ISP-47 on Containment Thermal Hydraulics. Nucl. Sci. Eng. 2018, 193, 63–80. [Google Scholar] [CrossRef]
- Le, D.; Labahn, J.; Beji, T.; Devaud, C.B.; Weckman, E.J.; Bounagui, A. Assessment of the capabilities of FireFOAM to model large-scale fires in a well-confined and mechanically ventilated multi-compartment structure. J. Fire Sci. 2018, 36, 3–29. [Google Scholar] [CrossRef]
- Kelm, S.; Kampili, M.; Kumar, G.V.; Sakamoto, K.; Liu, X.; Kuhr, A.; Druska, C.; Prakash, K.A.; Allelein, H.-J. Development and First Validation of the Tailored CFD Solver ‘containmentFoam’ for Analysis of Containment Atmosphere Mixing. In Proceedings of the 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18), Portland, OR, USA, 18–23 August 2019. [Google Scholar]
- Kelm, S.; Klauck, M.; Beck, S.; Allelein, H.-J.; Preusser, G.; Sangiorgi, M.; Klein-Hessling, W.; Bakalov, I.; Bleyer, A.; Bentaib, A.; et al. Generic Containment: Detailed comparison of containment simulations performed on plant scale. Ann. Nucl. Energy 2014, 74, 165–172. [Google Scholar] [CrossRef]
- Vijaya Kumar, G.; Kampili, M.; Kelm, S.; Arul Prakash, K.; Allelein, H.-J. Development and verification of a multi-species gas transport solver. In Proceedings of the 14th OpenFOAM Workshop, Duisburg, Germany, 23–26 July 2019. [Google Scholar]
- Vijaya Kumar, G.; Kampili, M.; Kelm, S.; Prakash, K.A.; Allelein, H.-J. CFD modelling of buoyancy driven flows in enclosures with relevance to nuclear reactor safety. Nucl. Eng. Des. 2020, 365, 110682. [Google Scholar] [CrossRef]
- Menter, F.R.; Kuntz, M.; Langtry, M.R. Ten Years of Industrial Experience with the SST Turbulence Model. Turbul. Heat Mass Transf. 2003, 4, 625–632. [Google Scholar]
- Chung, W.; Devaud, C.B. Buoyancy-corrected k-ε Models and large eddy simulation applied to a large axisymmetric helium plume. Int. J. Numer. Methods Fluids 2008, 58, 57–89. [Google Scholar] [CrossRef]
- Abe, S.; Ishigaki, M.; Sibamoto, Y.; Yonomoto, T. RANS analyses on erosion behavior of density stratification consisted of helium–air mixture gas by a low momentum vertical buoyant jet in the PANDA test facility, the third international benchmark exercise(IBE-3). Nucl. Eng. Des. 2015, 289, 231–239. [Google Scholar] [CrossRef]
- Lemmon, E.W.; McLinden, M.O.; Friend, D.G. Thermophysical Properties of Fluid Systems. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1998; p. 20899. [Google Scholar] [CrossRef]
- Verein Deutscher Ingenieure. VDI Waermeatlas, 10th ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Gray, P.; Wright, P.G. The thermal conductivity of mixtures of nitrogen, ammonia and hydrogen. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1961, 263, 161–188. [Google Scholar]
- Spalding, D.B. A Single Formula for the Law of the Wall. J. Appl. Mech. 1961, 28, 455–458. [Google Scholar] [CrossRef]
- Kader, B.A. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers. Int. J. Heat Mass Transf. 1981, 24, 1541–1544. [Google Scholar] [CrossRef]
- Menter, F.; Ferreira, J.C.; Esch, T.; Konno, B.; Germany, A.C. The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines. In Proceedings of the International Gas Turbine Congress, Tokyo, Japan, 2–7 November 2003. [Google Scholar]
- Vijaya Kumar, G.; Cammiade, L.M.F.; Kelm, S.; Prakash, K.A.; Rohlfs, W. Implementation of a CFD model for wall condensation in the presence of non-condensable gas mixtures. Appl. Therm. Eng. 2021, 187, 116546. [Google Scholar] [CrossRef]
- Kelm, S.; Mueller, H.; Hundhausen, A.; Druska, C.; Kuhr, A.; Allelein, H.-J. Development of a Multi-Dimensional Wall-Function Approach for Wall Condensation. Nucl. Eng. Des. 2019, 353, 110239. [Google Scholar] [CrossRef]
- Vyskocil, L.; Schmid, J.; Macek, J. CFD simulation of air–steam flow with condensation. Nucl. Eng. Des. 2014, 279, 147–157. [Google Scholar] [CrossRef]
- Kelm, S.; Müller, H.; Allelein, H.-J. Importance of thermal radiation heat transfer modeling in containment typical flows. In Proceedings of the OECD/NEA & IAEA Workshop on Experiments and CFD Codes Application to Nuclear Reactor Safety (CFD4NRS), Cambridge, MA, USA, 9–13 September 2016. [Google Scholar]
- Filippov, A.S.; Grigoryev, S.Y.; Tarasov, O.V. On the possible role of thermal radiation in containment thermal–hydraulics experiments by the example of CFD analysis of TOSQAN T114 air–He test. Nucl. Eng. Des. 2016, 310, 175–186. [Google Scholar] [CrossRef]
- Dehbi, A.; Kelm, S.; Kalilainen, J.; Müller, H. The Influence of Thermal Radiation on the Free Convection inside Enclosures. Nucl. Eng. Des. 2019, 341, 176–185. [Google Scholar] [CrossRef]
- Chai, J.C.; Lee, H.S.; Patankar, S.V. Ray effect and false scattering in the discrete ordinates method. Numer. Heat Transf. Part B Fundam. 1993, 24, 373–389. [Google Scholar] [CrossRef]
- Balsara, D. Fast and accurate discrete ordinates methods for multidimensional radiative transfer. J. Quant. Spectrosc. Radiat. Transf. 2001, 69, 671–707. [Google Scholar] [CrossRef]
- Modest, M.F. Radiative Heat Transfer; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Soufiani, A.; Taine, J. High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-K model for H2O and CO2. Int. J. Heat Mass Transf. 1997, 40, 987–991. [Google Scholar] [CrossRef]
- Goutiere, V.; Liu, F.; Charette, A.H. An assessment of real-gas modelling in 2D enclosures. J. Quant. Spectrosc. Radiat. Transf. 2000, 64, 299–326. [Google Scholar] [CrossRef] [Green Version]
- Forster, R.A.; Godfrey, T.N.K. MCNP-a general Monte Carlo code for neutron and photon transport. In Monte-Carlo Methods and Applications in Neutronics, Photonics and Statistical Physics; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Soucasse, L.; Riviere, P.; Soufiani, A. Monte Carlo methods for radiative transfer in quasi-isothermal participating media. J. Quant. Spectrosc. Radiat. Transf. 2013, 128, 34–42. [Google Scholar] [CrossRef]
- Tessé, L.; Dupoirieux, F.; Taine, B.Z.J. Radiative transfer in real gases using reciprocal and forward Monte Carlo methods and a correlated-k approach. Int. J. Heat Mass Transf. 2002, 45, 2797–2814. [Google Scholar] [CrossRef]
- Kampili, M.; Kelm, S.; Allelein, H.-J. Modeling of aerosol transport and decay heat distribution in containment flows. In Proceedings of the OECD/NEA & IAEA Workshop on Experiments and CFD Codes Application to Nuclear Reactor Safety (CFD4NRS-7), Shanghai, China, 4–6 September 2018. [Google Scholar]
- Allelein, H.J.; Auvinen, A.; Ball, J.; Güntay, S.; Herranz, L.E.; Hidaka, A.; Jones, A.V.; Kissane, M.; Powers, D.; Weber, G. State of the Art Report on Nuclear Aerosols; NEA/CSNI/R(2009)5; Nuclear Energy Agency, Committee on The Safety of Nuclear of Nuclear Installations: Paris, France, 2009. [Google Scholar]
- Dehbi, A. Turbulent particle dispersion in arbitrary wall-bounded geometries: A coupled CFD-Langevin-equation based approach. Int. J. Multiph. Flow 2008, 34, 819–828. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Agarwal, J.K. Experimental observation of aerosol deposition in turbulent flow. J. Aerosol Sci. 1974, 5, 145–155. [Google Scholar] [CrossRef]
- Dumaz, P.; Davis, E.J. Fission product deposition and revaporization phenomena in scenarios of large temperature differences. In Proceedings of the ANS Proceedings National Heat Transfer Conference, Atlanta, GA, USA, 8–11 August 1993; pp. 154–163. [Google Scholar]
- Manninen, M.; Taivassalo, V.; Kallio, S. On the Mixture Model for Multiphase Flow; No. 288; VTT Technical Research Centre of Finland: Espoo, Finland, 1996; ISBN 951-38-4946-5. [Google Scholar]
- Frederix, M.E.; Kuczaj, A.K.; Nordlund, M.; Veldman, A.E.P.; Geurts, B.J. Eulerian modeling of inertial and diffusional aerosol deposition in bent pipes. Comput. Fluids 2017, 159, 217–231. [Google Scholar] [CrossRef]
- Asgari, M.; Lucci, F.; Kuczaj, A.K. Multispecies aerosol evolution and deposition in a bent pipe. J. Aerosol Sci. 2019, 129, 53–70. [Google Scholar] [CrossRef]
- Jokiniemi, J. Effect of selected binary and mixed solutions on steam condensation and aerosol behavior in containment. Aerosol Sci. Technol. 1990, 12, 891–902. [Google Scholar] [CrossRef] [Green Version]
- Reinecke, E.-A.; Kelm, S.; Steffen, P.-M.; Klauck, M.; Allelein, H.-J. Validation and application of the REKO-DIREKT code for the simulation of passive auto-catalytic recombiners (PARs) operational behavior. Nucl. Technol. 2016, 196, 355–366. [Google Scholar] [CrossRef]
- Kelm, S.; Jahn, W.; Reinecke, E.-A.; Schulze, A. Passive auto-catalytic recombiner operation—Validation of a CFD approach against OECD-THAI HR2-test. In Proceedings of the OECD/NEA & IAEA Workshop on Experiments and CFD Codes Application to Nuclear Reactor Safety (XCFD4NRS), Daejeon, Korea, 9–13 September 2012. [Google Scholar]
- OECD/NEA SETH-2 Project. OECD/SETH-2 Project PANDA and MISTRA Experiments—Investigation of Key Issues for the Simulation of Thermal-Hydraulic Conditions in Water Reactor Containments; Final Summary Report, NEA/CSNI/R(2012)5; Nuclear Energy Agency, Committee on The Safety of Nuclear of Nuclear Installations: Paris, France, 2012. [Google Scholar]
- Kelm, S.; Ritterath, M.; Prasser, H.-M.; Allelein, H.-J. Application of the MiniPanda Test Case ‘Erosion of a Stratified Layer by a Vertical Jet’ for CFD Validation. Nucl. Eng. Des. 2016, 299, 124–135. [Google Scholar] [CrossRef]
- Kelm, S.; Kapulla, R.; Allelein, H.-J. Erosion of a confined stratified layer by a vertical jet—Detailed assessment of a CFD approach against the OECD/NEA PSI benchmark. Nucl. Eng. Des. 2017, 312, 228–238. [Google Scholar] [CrossRef]
- Studer, E.; Abe, S.; Andreani, M.; Bharj, J.; Gera, B.; Ishay, L.; Kelm, S.; Kim, J.; Lu, Y.; Paliwal, P.; et al. Stratification Break-up by a Diffuse Buoyant Jet: A CFD Benchmark Exercise. In Proceedings of the 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-12), Qingdao, China, 14–18 October 2018. [Google Scholar]
- Andreani, M.; Gaikwad, A.J.; Ganju, S.; Gera, B.; Grigoryev, S.; Herranz, L.E.; Huhtanen, R.; Kale, V.; Kanaev, A.; Kapulla, R.; et al. Synthesis of a CFD Benchmark Excercise based on a Test in the PANDA Facility Adressing the Stratification Erosion by a Vertical Jet in Presence of a Flow Obstruction. Nucl. Eng. Des. 2019, 354, 110177. [Google Scholar] [CrossRef]
- Kelm, S.; Lehmkuhl, J.; Jahn, W.; Allelein, H.-J. A Comparative Assessment of different Experiments on Buoyancy Driven Mixing Processes by means of CFD. Ann. Nucl. Energy 2016, 93, 50–57. [Google Scholar] [CrossRef]
- Mahaffy, J.; Chung, B.; Dubois, F.; Ducros, F.; Graffard, E.; Heitsch, M.; Henriksson, M.; Komen, E.; Moretti, F.; Morii, T.; et al. Best Practice Guidelines for the Use of CFD in Nuclear Reactor Safety Applications—Revision; NEA/CSNI/R(2014)11; Nuclear Energy Agency, Committee on The Safety of Nuclear of Nuclear Installations: Paris, France, 2014. [Google Scholar]
- Ji, R.; Wenig, P.; Kelm, S.; Klein, M. Uncertainty Quantification for URANS based CFD Analysis of Buoyancy Driven Flows—Comparison of the Sensitivity of URANS and LES. In Proceedings of the CFD4NRS-8, Saclay, France, 26–29 November 2020. [Google Scholar]
- Wenig, P.; Ji, R.; Kelm, S.; Klein, M. Towards Uncertainty Quantification of LES and URANS for the buoyancy-driven mixing process between two miscible fluids—Differentially Heated Cavity of Aspect Ratio 4. Fluids 2021. submitted for publication. [Google Scholar]
- OECD/NEA THAI Project. OECD/NEA THAI Project Hydrogen and Fission Product Issues Relevant for Containment Safety Assessment under Severe Accident Conditions; Final Summary Report, NEA/CSNI/R(2010)3; Nuclear Energy Agency, Committee on The Safety of Nuclear of Nuclear Installations: Paris, France, 2010. [Google Scholar]
- Fiorina, C.; Shriwise, P.; Dufresne, A.; Ragusa, J.; Ivanov, K.; Valentine, T.; Lindley, B.; Kelm, S.; Shwageraus, E.; Monti, S.; et al. An Initiative for the Development and Application of Open-Source Multi-Physics Simulation in Support of R&D and E&T in Nuclear Science and Technology. EPJ Web Conf. 2021, 247, 02040. [Google Scholar]
Phenomenon | Model |
---|---|
Governing Equations (Section 2.1) | unsteady Reynolds-averaged Navier-Stokes equations, total energy equation (Non-unity Lewis number formulation), transport equation for species mass fraction |
Turbulent Transport (Section 2.2.1) | k-ω based Shear Stress Transport (SST) model, including production and dissipation terms for buoyancy turbulence based on SGDH; Turbulent heat and mass transport: SGDH, Prt = Sct = 0.9 |
Multi-Species Transport (Section 2.2.2) | temperature dependent transport properties and specific heat capacity, Wilke mixture for transport properties, effective binary diffusion model, pressure and temperature dependent diffusion coefficients according to Fuller model* |
Wall Treatment and Condensation (Section 2.2.3) | continuous wall functions wall condensation: single phase ‘diffusion-layer’ approach bulk condensation: single phase homogeneous equilibrium approach |
Thermal Radiation (Section 2.2.4) | Monte Carlo RTE solver, importance sampling with 40–160 photon histories per cell, spectral models of participating media: gray (Planck mean absorption coefficient) and SNBCK, εwall = 0.6, |
Aerosol Transport and Decay Heat (Section 2.2.5) | Euler-Lagrangian framework: Drag, lift and thermophoretic force, continuous random walk model Euler-Eulerian framework (in progress): Mixture model with corrections for particle inertia, Brownian diffusion for sub-micron particles, sectional modeling for evolution of aerosol size distribution due to steam condensation, agglomeration, de-agglomeration |
System Models (Section 2.2.6) | porous media, conditional AMI for burst discs & doors coupling with mechanistic PAR model REKODIREKT |
Phenomenon | Separate Effect Test | Coupled and Integral Effect Test |
---|---|---|
Basic Transport Phenomena: | ||
• Stratification built-up | Garage | THAI: HM2, TH21 PANDA: SETH, PE0 TOSQAN: ISP-47 MISTRA: MERCO-0, MM3 |
• Mixed/free convection | SETCOM / CONAN | |
• Wall /bulk condensation | SETCOM / CONAN | |
• Gas radiation heat transfer | Goutiere et al., Cassol et al. | |
• Buoyancy turbulence | FLAME | |
Stratification re-mobilization: | THAI: TH22, TH24, TH26 PANDA: SETH-2, HYMERES MISTRA: NATHCO, MERCO-2 | |
• Jet/momentum driven | MiniPanda | |
• Plume driven | ||
• Diffuse flows | ||
• Wall bounded natural circulation | ||
• Thermal plumes | ||
Safety systems: • PAR operation | REKO | THAI: HR |
Aerosol transport: • Drag, lift and thermophoretic force • Turbulent dispersion | Liu-Agrawal STORM, DIANA, TUBA | THAI: AW, HD Phebus KAEVER |
Scenario (scaled): | THAI: ISP-47 MISTRA: MERCO PANDA: PE BMC: VANAM M3/M4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelm, S.; Kampili, M.; Liu, X.; George, A.; Schumacher, D.; Druska, C.; Struth, S.; Kuhr, A.; Ramacher, L.; Allelein, H.-J.; et al. The Tailored CFD Package ‘containmentFOAM’ for Analysis of Containment Atmosphere Mixing, H2/CO Mitigation and Aerosol Transport. Fluids 2021, 6, 100. https://doi.org/10.3390/fluids6030100
Kelm S, Kampili M, Liu X, George A, Schumacher D, Druska C, Struth S, Kuhr A, Ramacher L, Allelein H-J, et al. The Tailored CFD Package ‘containmentFOAM’ for Analysis of Containment Atmosphere Mixing, H2/CO Mitigation and Aerosol Transport. Fluids. 2021; 6(3):100. https://doi.org/10.3390/fluids6030100
Chicago/Turabian StyleKelm, Stephan, Manohar Kampili, Xiongguo Liu, Allen George, Daniel Schumacher, Claudia Druska, Stephan Struth, Astrid Kuhr, Lucian Ramacher, Hans-Josef Allelein, and et al. 2021. "The Tailored CFD Package ‘containmentFOAM’ for Analysis of Containment Atmosphere Mixing, H2/CO Mitigation and Aerosol Transport" Fluids 6, no. 3: 100. https://doi.org/10.3390/fluids6030100
APA StyleKelm, S., Kampili, M., Liu, X., George, A., Schumacher, D., Druska, C., Struth, S., Kuhr, A., Ramacher, L., Allelein, H. -J., Prakash, K. A., Kumar, G. V., Cammiade, L. M. F., & Ji, R. (2021). The Tailored CFD Package ‘containmentFOAM’ for Analysis of Containment Atmosphere Mixing, H2/CO Mitigation and Aerosol Transport. Fluids, 6(3), 100. https://doi.org/10.3390/fluids6030100