Experimental and Numerical Study of Swirling Diffusion Flame Provided by a Coaxial Burner: Effect of Inlet Velocity Ratio
Abstract
:1. Introduction
2. Experimental Setup
3. Numerical Modeling
3.1. Gouverning Equations
3.2. Turbulence Model
3.3. Combustion Modeling
3.4. Computational Domain and Boundary Conditions
4. Results and Discussion
4.1. Model Validation
4.2. Effect of the Velocity Ratio
4.2.1. Turbulent Kinetic Energy
4.2.2. Temperature Distribution
4.2.3. Mass Fraction of CH4 and O2
4.2.4. Pollutant Emissions
5. Conclusions
- For a fixed inlet fuel velocity, the variation of inlet air velocity in a coaxial burner configuration causes a change in the dynamics of the flame. The increase in the velocity ratio leads to an increase in the turbulent kinetic energy and subsequently improves the mixing.
- The radial injection of fuel induces a partial premixing between reactants, which affects the flame behavior, in particular the flame stabilization.
- Increasing the velocity ratio causes a modification of the flame morphology and the flame becomes well attached to the burner.
- The addition of air decreases the flame length and the height of liftoff and the flame becomes more attached to the burner.
- Pollutant emission results revealed that the increase in the velocity ratio reduced the CO emissions caused by the temperature variation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, F.; Li, L.; Wang, Q.; Shi, Q. Effect of cross-wind on near-wall buoyant turbulent diffusion flame length and tilt. Fuel 2016, 186, 350–357. [Google Scholar] [CrossRef]
- Li, X.; Dai, Z.; Guo, Q.; Liang, Q.; Wang, F. Experimental and numerical study of mild combustion in a bench scale natural gas partial oxidation gasifier. Fuel 2017, 193, 197. [Google Scholar] [CrossRef]
- Merlo, N.; Boushaki, T.; Chauveau, C.; de Persis, S.; Pillier, L.; Sarh, B.; Gökalp, I. Experimental study of oxygen enrichment effects on turbulent non-premixed swirling flames. Energy Fuels 2013, 27, 6191–6197. [Google Scholar] [CrossRef]
- Zaidaoui, H.; Boushaki, T.; Sautet, J.C.; Chauveau, C.; Sarh, B.; Gökalp, I. Effects of CC2 dilution and O2 enrichment on non-premixed turbulent ch4-air flames in a swirl burner. Combust. Sci. Technol. 2018, 190, 784–802. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, I. Effect of swirl number on combustion characteristics in a natural gas diffusion flame. J. Energy Resour. Technol. 2013, 135, 042204. [Google Scholar] [CrossRef]
- Acharya, V.; Lieuwen, T. Effect of azimuthal flow fluctuations on flow and flame dynamics of axisymmetric swirling flames. Phys. Fluids 2015, 27, 105106. [Google Scholar] [CrossRef] [Green Version]
- Jerzak, W.; Kuźnia, M. Experimental study of impact of swirl number as well as oxygen and carbon dioxide content in natural gas combustion air on flame flashback and blow-off. J. Nat. Gas Sci. Eng. 2016, 29, 46–54. [Google Scholar] [CrossRef]
- Iyogun, C.O.; Birouk, M.; Kozinski, J.A. Experimental investigation of the effect of fuel nozzle geometry on the stability of a swirling non-premixed methane flame. Fuel 2011, 90, 1416–1423. [Google Scholar] [CrossRef]
- Seepana, S.; Jayanti, S. Experimental studies of flame extinction in a swirl-stabilized oxy-fuel burner. Fuel 2012, 93, 75–81. [Google Scholar] [CrossRef]
- Gupta, A.K.; Lilley, D.G.; Syred, N. Swirl Flows; Abacus Press: London, UK, 1984. [Google Scholar]
- Syred, N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 2006, 32, 93–161. [Google Scholar] [CrossRef]
- Boushaki, T.; Sautet, J.-C.; Labegorre, B. Control of flames by tangential jet actuators in oxy-fuel burners. Combust. Flame 2009, 156, 2043–2055. [Google Scholar] [CrossRef]
- Boushaki, T.; Merlo, N.; de Persis, S.; Chauveau, C.; Göalp, I. Experimental investigation of CH4-air-O2 turbulent swirling flames by SPIV. Exp. Therm. Fluid Sci. 2019, 106, 87–99. [Google Scholar] [CrossRef]
- Khodabandeh, E.; Moghadasi, H.; Safari Pour, M.; Ersson, M.; Jönsson, P.G.; Rosen, M.A.; Rahbari, A. CFD study of non-premixed swirling burners: Effect of turbulence models. Chin. J. Chem. Eng. 2020, 28, 1028–1038. [Google Scholar] [CrossRef]
- Wegner, B.; Maltsev, A.; Schneider, C.; Sadiki, A.; Dreizler, A.; Janicka, J. Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat Fluid Flow 2004, 25, 528–536. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, R. Three-dimensional turbulent swirling flow in a cylinder: Experiments and computations. Int. J. Heat Fluid Flow 2007, 28, 249–261. [Google Scholar] [CrossRef]
- Jones, W.P.; Lentini, D. A realizable non-linear eddy viscosity/diffusivity model for confined swirling flows. Int. J. Heat Fluid Flow 2008, 29, 1612–1627. [Google Scholar] [CrossRef]
- Mansouri, Z.; Aouissi, M.; Boushaki, T. Detached eddy simulation of high turbulent swirling reacting flow in a premixed model burner. Combust. Sci. Technol. 2016, 188, 1777–1798. [Google Scholar] [CrossRef]
- Fu, J.; Tang, Y.; Li, J.; Ma, Y.; Chen, W.; Li, H. Four kinds of the two-equation turbulence model’s research on flow field simulation performance of DPF’s porous media and swirl-type regeneration burner. Appl. Therm. Eng. 2016, 93, 397–404. [Google Scholar] [CrossRef]
- Ries, L.; Carvalho, J.; Nascimento, M.A.R.; Rodrigives, L.O.; Dias, F.; Sobrinho, P.M. Numerical modeling of flow through an industrial burner orifice. Appl. Therm. Eng. 2014, 67, 201–213. [Google Scholar] [CrossRef]
- Mansouri, Z.; Boushaki, T. Experimental and numerical investigation of turbulent isothermal and reacting flows in non-premixed swirl burner. Int. J. Heat Fluid Flow 2018, 72, 200–213. [Google Scholar] [CrossRef]
- Mansouri, Z.; Boushaki, T. Investigation of large-scale structures of annular swirling jet in a non-premixed burner using delayed detached eddy simulation. Int. J. Heat Fluid Flow 2019, 77, 217–231. [Google Scholar] [CrossRef]
- Hidouri, A.; Gazzah, M.H.; Ben Tïcha, H.; Sassi, M. Dynamic and scalar turbulent fluctuation in a diffusion flame of an-axisymmetric methane jet into air. Comput. Mech. 2003, 31, 253–261. [Google Scholar] [CrossRef]
- Hidouri, A.; Yahya, N.; Boushaki, T.; Sadiki, A.; Sautet, J.C. Numerical and experimental investigation of turbulent three separated jets. J. Appl. Therm. Eng 2016, 104, 153–161. [Google Scholar] [CrossRef]
- Hidouri, A.; Chrigui, M.; Boushaki, T.; Sadiki, A.; Janicka, J. Large eddy simulation of two isothermal and reacting turbulent separated oxy-fuel jets. Fuel 2017, 192, 108–120. [Google Scholar] [CrossRef]
- Yahya, N.; Hidouri, A.; Chrigui, M.; Omri, A. LES modeling of non-premixed turbulent Oxy-Fuel combustion supplied by three separated jets. Combust. Sci. Technol. 2016, 188, 1220–1238. [Google Scholar]
- Achim, D.; Naser, J.; Morsi, Y.S.; Pascoe, S. Numerical investigation of full scale coal combustion model of tangentially fired boiler with the effect of mill ducting. Heat Mass Transf. 2009, 46, 1–13. [Google Scholar] [CrossRef]
- Lopez-Parra, F.; Turan, A. Computational study on the effects of non-periodic flow perturbations on the emissions of soot and NOx in a confined turbulent methane/air diffusion flame. Combust. Sci. Technol. 2007, 179, 1361–1384. [Google Scholar] [CrossRef]
- Baik, J.S.; Kim, Y.J. Effect of nozzle shape on the performance of high velocity oxygen-fuel thermal spray system. Surf. Coat. Technol. 2008, 202, 5457–5462. [Google Scholar] [CrossRef]
- Rehab, H.; Villermaux, E.; Hopfinger, E.J. Flow regimes of large-velocity-ratio coaxial jets. J. Fluid. Mech. 1997, 345, 357–381. [Google Scholar] [CrossRef]
- Schumaker, S.A.; Driscoll, J.F. Mixing lengths of coaxial jets in a rocket combustor configuration using acetone PLIF. In Proceeding of the 43rd AIAA/ASME/SAE ASEE Joint Propulsion Conference and Exhibit, Cincinnati, OH, USA, 8–11 July 2007. [Google Scholar]
- Schumaker, S.A.; Driscoll, J.F. Mixing properties of coaxial jets with large velocity ratios and large inverse density ratios. Phys. Fluid 2012, 24, 1–22. [Google Scholar]
- Wu, K.T.; Essenhigh, R.H. Mapping and structure of inverse diffusion flames of methane. Combust Inst. 1984, 20, 1925–1932. [Google Scholar] [CrossRef]
- Imine, B.; Saber-Bendhina, A.; Imine, O.; Gazzah, M.H. Effects of a directed co-flow on a non-reactive turbulent jet with variable density. Heat Mass Transf. 2005, 42, 39–50. [Google Scholar] [CrossRef]
- Kim, T.Y.; Choi, S.; Kim, H.K.; Jeung, I.; Koo, J.; Kwon, O.C. Combustion properties of gaseous CH4/O2 coaxial jet flames in a single-element combustor. Fuel 2016, 184, 28–35. [Google Scholar] [CrossRef]
- Choi, S.; Kim, T.Y.; Kim, H.K.; Jeung, I.; Koo, J.; Kwon, O.C. Combustion stability of gaseous CH4/O2 and H2/O2 coaxial jet flames in a single-element combustor. Energy 2017, 132, 57–64. [Google Scholar] [CrossRef]
- Beér, J.M.; Chigier, N.A. Combustion Aerodynamics; Applied Sci Publishers Ltd.: London, UK, 1972. [Google Scholar]
- Moussa, O.; Driss, Z. Numerical investigation of the turbulence models effect on the combustion characteristics in a non-premixed turbulent flame methane-air. Am. J. Energy Res. 2017, 5, 85–93. [Google Scholar]
- Bulat, M.P.; Bulat, P.V. Comparison of turbulence models in the calculation of supersonic separated flows. World Appl. Sci. J. 2013, 27, 1263–1266. [Google Scholar]
- Magnussen, R.; Hjertager, B.H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. Int. Combust. 1976, 16, 719–729. [Google Scholar] [CrossRef]
- ANSYS FLUENT. Academic Research. Release 16.0. Help System, FLUENT User Guide; ANSYS Inc.: Canonsburg, PA, USA, 2016. [Google Scholar]
- Wang, P. The model constant A of the eddy dissipation model. Progr. Comput. Fluid Dyn. Int. J. 2016, 16, 118. [Google Scholar] [CrossRef]
- Nogenmyr, K.J.; Fureby, C.; Bai, X.S.; Petersson, P.; Collin, R.; Linne, M. Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame. Combust. Flame 2009, 156, 25–36. [Google Scholar] [CrossRef]
Cases | Qfuel (Nl/min) | Qair (Nl/min) | fuel (kg/s) | air (kg/s) | Vi (m/s) | Ve (m/s) | Rv | ɸ |
---|---|---|---|---|---|---|---|---|
Case 1: Rv < 1 | 15.75 | 150 | 0.00017 | 0.0032 | 4.98 | 2.8 | 0.56 | 1 |
Case 2: Rv = 1 | 15.75 | 266 | 0.00017 | 0.0056 | 4.98 | 4.98 | 1 | 0.56 |
Case 3: Rv > 1 | 15.75 | 400 | 0.00017 | 0.0085 | 4.98 | 7.47 | 1.5 | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakchak, S.; Hidouri, A.; Zaidaoui, H.; Chrigui, M.; Boushaki, T. Experimental and Numerical Study of Swirling Diffusion Flame Provided by a Coaxial Burner: Effect of Inlet Velocity Ratio. Fluids 2021, 6, 159. https://doi.org/10.3390/fluids6040159
Chakchak S, Hidouri A, Zaidaoui H, Chrigui M, Boushaki T. Experimental and Numerical Study of Swirling Diffusion Flame Provided by a Coaxial Burner: Effect of Inlet Velocity Ratio. Fluids. 2021; 6(4):159. https://doi.org/10.3390/fluids6040159
Chicago/Turabian StyleChakchak, Sawssen, Ammar Hidouri, Hajar Zaidaoui, Mouldi Chrigui, and Toufik Boushaki. 2021. "Experimental and Numerical Study of Swirling Diffusion Flame Provided by a Coaxial Burner: Effect of Inlet Velocity Ratio" Fluids 6, no. 4: 159. https://doi.org/10.3390/fluids6040159
APA StyleChakchak, S., Hidouri, A., Zaidaoui, H., Chrigui, M., & Boushaki, T. (2021). Experimental and Numerical Study of Swirling Diffusion Flame Provided by a Coaxial Burner: Effect of Inlet Velocity Ratio. Fluids, 6(4), 159. https://doi.org/10.3390/fluids6040159