Two-Phase Gas and Dust Free Expansion: Three-Dimensional Benchmark Problem for CFD Codes
Abstract
:1. Introduction
2. Benchmark Solution for Gas and Dust Ball Expansion into Vacuum
2.1. Regular Expansion of a Gas Cloud into Vacuum—Brief Outline of Previous Results
2.2. Problem Description and Derivation of the Analytical Solution
2.3. Benchmark Solution Generator
- physical parameters of the dusty gas medium , , , , , the initial radial velocity of the gas cloud boundary , the initial radial velocity of the dust cloud boundary , the internal energy of the gas cloud in its center at the initial time moment ,
- the time of integration ,
- the calculation parameter , which is the time step for integration of the system of ordinary differential equations.
- the spacial distribution of the dusty gas medium macro parameters , , v, u, p, and e at a given time ,
- the dependence of the ball radii on time , at the time interval .
2.4. Comparison of the New Solution for Dusty Gas with Previous Analytical Results for Pure Gas
3. Numerical Solution of the Gas and Dust Expansion Problem
3.1. Numerical SPH-IDIC Method
- Computing the acceleration (40) from all forces acting on gas particles in the layer n except for the drag force. This step is identical to that in the conventional SPH method and is performed in parallel. The acceleration computation procedures run concurrently to process the array of particles and are invoked in a cycle across neighboring cells of the auxiliary grid used for the search of neighbors.
- Computing average values within each cell in the layer n. This step requires a single run across all particles and is performed in parallel.
- Computing average velocities across cells in the layer is performed in parallel.
- Computing velocities in the layer is performed in parallel for each phase. The phases are handled consequently, that is, the calculation is first run in parallel for gas particles, and then for dust particles.
- Computing new coordinates, densities, pressures, and energies is the same as in the traditional SPH method and performed as parallel procedures.
3.2. Implementation of Boundary Conditions
3.3. SPH-IDIC Implementation in OpenFPM
4. Benchmark Problem for Arbitrary Relaxation Time for SPH-IDIC in Three Dimensions
4.1. Physical and Numerical Setup of Models
4.2. Ball Expansion into Vacuum at Finite Velocity Relaxation Times
4.3. Ball Expansion into Vacuum at Infinitely Small and Infinitely Large Velocity Relaxation Times
4.4. Discussion, Results and Limits of the Study and Future Plans
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Marchisio, D.L.; Fox, R.O. Computational Models for Polydisperse Particulate and Multiphase Systems; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Nigmatullin, R.I. Dynamics of Multiphase Media; Hemisphere Publ. Corp: New York, NY, USA, 1990; Volume 1. [Google Scholar]
- Soo, S.L. Particulates and Continuum: Multiphase Fluid Dynamics; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Akimkin, V.V.; Vorobyov, E.I.; Pavlyuchenkov, Y.N.; Stoyanovskaya, O.P. Gravitoviscous protoplanetary discs with a dust component–IV. Disc outer edges, spectral indices, and opacity gaps. Mon. Not. R. Astron. Soc. 2020, 499, 5578–5597. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Sekiya, M.; Hayashi, C. Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 1986, 67, 375–390. [Google Scholar] [CrossRef]
- Takeuchi, T.; Lin, D.N.C. Radial Flow of Dust Particles in Accretion Disks. Astrophys. J. 2002, 581, 1344–1355. [Google Scholar] [CrossRef] [Green Version]
- Benítez-Llambay, P.; Krapp, L.; Pessah, M.E. Asymptotically Stable Numerical Method for Multispecies Momentum Transfer: Gas and Multifluid Dust Test Suite and Implementation in FARGO3D. Astrophys. J. Suppl. Ser. 2019, 241, 25. [Google Scholar] [CrossRef] [Green Version]
- Dipierro, G.; Laibe, G.; Alexander, R.; Hutchison, M. Gas and multispecies dust dynamics in viscous protoplanetary discs: The importance of the dust back-reaction. Mon. Not. R. Astron. Soc. 2018, 479, 4187–4206. [Google Scholar] [CrossRef]
- Marble, F.E. Dynamics of Dusty Gases. Annu. Rev. Fluid Mech. 1970, 2, 397–446. [Google Scholar] [CrossRef]
- Laibe, G.; Price, D.J. DUSTYBOX and DUSTYWAVE: Two test problems for numerical simulations of two-fluid astrophysical dust-gas mixtures. Mon. Not. R. Astron. Soc. 2011, 418, 1491–1497. [Google Scholar] [CrossRef] [Green Version]
- Markelova, T.V.; Arendarenko, M.S.; Isaenko, E.A.; Stoyanovskaya, O.P. Plane Sound Waves of Small Amplitude in a Gas-Dust Mixture with Polydisperse Particles. J. Appl. Mech. Tech. Phys. 2021, 62, 663–672. [Google Scholar] [CrossRef]
- Stoyanovskaya, O.P.; Grigoryev, V.V.; Savvateeva, T.A.; Arendarenko, M.S.; Isaenko, E.A.; Markelova, T.V. DMulti-fluid dynamical model of isothermal gas and buoyant dispersed particles: Monodisperse mixture, ben solution of DustyWave problem as test for CFD-solvers, effective sound speed for high and low mutual drag. Int. J. Multiph. Flow. accepted.
- Booth, R.A.; Sijacki, D.; Clarke, C.J. Smoothed particle hydrodynamics simulations of gas and dust mixtures. Mon. Not. R. Astron. Soc. 2015, 452, 3932–3947. [Google Scholar] [CrossRef] [Green Version]
- Laibe, G.; Price, D.J. Dusty gas with smoothed particle hydrodynamics -I. Algorithm and test suite. Mon. Not. R. Astron. Soc. 2012, 420, 2345–2364. [Google Scholar] [CrossRef]
- Stoyanovskaya, O.P.; Davydov, M.N.; Arendarenko, M.S.; Isaenko, E.A.; Markelova, T.V.; Snytnikov, V.N. Fast method to simulate dynamics of two-phase medium with intense interaction between phases by smoothed particle hydrodynamics: Gas-dust mixture with polydisperse particles, linear drag, one-dimensional tests. J. Comput. Phys. 2021, 430, 110035. [Google Scholar] [CrossRef]
- Lehmann, A.; Wardle, M. Two-fluid dusty shocks: Simple benchmarking problems and applications to protoplanetary discs. Mon. Not. R. Astron. Soc. 2018, 476, 3185–3194. [Google Scholar] [CrossRef]
- Youdin, A.N.; Goodman, J. Streaming instabilities in protoplanetary disks. Astrophys. J. 2005, 620, 459. [Google Scholar] [CrossRef]
- Bai, X.-N.; Stone, J.M. Particle-gas Dynamics with Athena: Method and Convergence. Astrophys. J. Suppl. Ser. 2010, 190, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Keller, J.B. Spherical, cylindrical and one-dimensional gas flows. J. Quart. Appl. Math. 1956, 14, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Sedov, L.I. On the integration of the equations of one-dimensional gas motion. Dokl. Akad. Nauk USSR 1953, 90, 735. [Google Scholar]
- Ovsyannikov, L. New solution of hydrodynamic equations. Dokl. Akad. Nauk 1956, 111, 47. [Google Scholar]
- Zeldovich, Y.B.; Raizer, Y.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Nemchinov, I.V. Expansion of a Triaxial Gas Ellipsoid in a Regular Mode. Prikl. Mat. Mekh. 1965, 29, 926–929. [Google Scholar]
- Dyson, F.J. Dynamics of a Spinning Gas Cloud. J. Math. Mech. 1968, 18, 91–101. [Google Scholar] [CrossRef]
- Bogoyavlensky, O. Methods in the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics; Springer: Berlin, Germany, 1985. [Google Scholar]
- Lidov, M.L. Exact solution of the equations of one-dimensional unsteady gas motion taking into account Newtonian gravitational forces. Dokl. Akad. Nauk USSR 1954, 97, 409–410. [Google Scholar]
- Bizyaev, I.A.; Borisov, A.V.; Mamaev, I.S. Figures of equilibrium of an inhomogeneous self-gravitating fluid. Celestial Mech. Dyn. Astron 2015, 122, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Borisov, A.V.; Kilin, A.A.; Mamaev, I.S. The Hamiltonian dynamics of self-gravitating liquid and gas ellipsoids. Regul. Chaotic Dyn. 2009, 14, 179–217. [Google Scholar] [CrossRef]
- Giron, J.F.; Ramsey, S.D.; Baty, R.S. Nemchinov–Dyson solutions of the two-dimensional axisymmetric inviscid compressible flow equations. Phys. Fluids 2020, 32, 127116. [Google Scholar] [CrossRef]
- Monaghan, J.J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005, 68, 1703. [Google Scholar] [CrossRef]
- Stoyanovskaya, O.P.; Glushko, T.A.; Snytnikov, N.V.; Snytnikov, V.N. Two-fluid dusty gas in smoothed particle hydrodynamics: Fast and implicit algorithm for stiff linear drag. Astron. Comput. 2018, 25, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Lorén-Aguilar, P.; Bate, M.R. Two-fluid dust and gas mixtures in smoothed particle hydrodynamics: A semi-implicit approach. Mon. Not. R. Astron. Soc. 2014, 443, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Lorén-Aguilar, P.; Bate, M.R. Two-fluid dust and gas mixtures in smoothed particle hydrodynamics II: An improved semi-implicit approach. Mon. Not. R. Astron. Soc. 2015, 454, 4114–4119. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, J.J.; Kocharyan, A. SPH simulation of multi-phase flow. Comput. Phys. Commun. 1995, 87, 225–235. [Google Scholar] [CrossRef]
- Monaghan, J.J. On the integration of the SPH equations for a dusty fluid with high drag. Eur. J. Mech. -B/Fluids 2020, 79, 454–462. [Google Scholar] [CrossRef]
- Price, D.J.; Laibe, G. A solution to the overdamping problem when simulating dust-gas mixtures with smoothed particle hydrodynamics. Mon. Not. R. Astron. Soc. 2020, 495, 3929–3934. [Google Scholar] [CrossRef]
- Morris, J.P.; Fox, P.J.; Zhu, Y. Modeling low reynolds number incompressible flows using sph. J. Comput. Phys. 1997, 136, 214–226. [Google Scholar] [CrossRef]
- Incardona, P.; Leo, A.; Zaluzhnyi, Y.; Ramaswamy, R.; Sbalzarini, I.F. OpenFPM: A scalable open framework for particle and particle-mesh codes on parallel computers. Comput. Phys. Commun. 2019, 241, 155–177. [Google Scholar] [CrossRef]
- Grigoryev, V.; Stoyanovskaya, O.; Snytnikov, N. Supercomputer model of dynamical gas-and-dust with intense momentum transfer between phases based on OpenFPM library. J. Phys. Conf. Ser. Accept. 2021, 2099, 012056. [Google Scholar] [CrossRef]
- Mentiplay, D.; Price, D.J.; Pinte, C.; Laibe, G. A smoothed particle hydrodynamics algorithm for multigrain dust with separate sets of particles. Mon. Not. R. Astron. Soc. 2020, 499, 3806–3818. [Google Scholar] [CrossRef]
- Davydov, M.N.; Stoyanovskaya, O.P.; Glushko, T.A. Numerical modelling of a gas-dust sphere scattering by SPH-IDIC method. J. Phys. Conf. Ser. 2020, 1675, 012071. [Google Scholar] [CrossRef]
- Panov, A.V. Invariant solutions and submodels in two-phase fluid mechanics generated by 3-dimensional subalgebras: Barochronous flows. Int. J. Non-Linear Mech. 2019, 116, 140. [Google Scholar] [CrossRef]
Model | N | h | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M | 40 | 0.1 | 1.0 | 4/3 | 1000 | 40 | 1.0 | 1.0 | 18.61 | ||
S | 40 | 0.1 | 0.5 | 4/3 | 1000 | 800 | 1.0 | 1.0 | 18.61 | ||
L | 40 | 0.1 | 0.5 | 4/3 | 1000 | 800 | 1.0 | 1.0 | 18.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoyanovskaya, O.P.; Grigoryev, V.V.; Suslenkova, A.N.; Davydov, M.N.; Snytnikov, N.V. Two-Phase Gas and Dust Free Expansion: Three-Dimensional Benchmark Problem for CFD Codes. Fluids 2022, 7, 51. https://doi.org/10.3390/fluids7020051
Stoyanovskaya OP, Grigoryev VV, Suslenkova AN, Davydov MN, Snytnikov NV. Two-Phase Gas and Dust Free Expansion: Three-Dimensional Benchmark Problem for CFD Codes. Fluids. 2022; 7(2):51. https://doi.org/10.3390/fluids7020051
Chicago/Turabian StyleStoyanovskaya, Olga P., Vitaliy V. Grigoryev, Anastasiya N. Suslenkova, Maxim N. Davydov, and Nikolay V. Snytnikov. 2022. "Two-Phase Gas and Dust Free Expansion: Three-Dimensional Benchmark Problem for CFD Codes" Fluids 7, no. 2: 51. https://doi.org/10.3390/fluids7020051
APA StyleStoyanovskaya, O. P., Grigoryev, V. V., Suslenkova, A. N., Davydov, M. N., & Snytnikov, N. V. (2022). Two-Phase Gas and Dust Free Expansion: Three-Dimensional Benchmark Problem for CFD Codes. Fluids, 7(2), 51. https://doi.org/10.3390/fluids7020051