GIS and Wave Modeling for Establishing a Potential Area of Aquaculture—Case Study: Central Atlantic Part of the Moroccan Coast
Abstract
:1. Introduction
- (i)
- demonstrate how the SWAN model can give us a broad outline of the feasibility of an aquaculture facility and
- (ii)
- compare the results with the proposed future development plan.
2. Material and Method
2.1. Study Area
2.2. Data Description
2.2.1. Bathymetry Data
2.2.2. Boundary Conditions
2.2.3. AVISO Data
3. Methodology
- Modeling via the SWAN model to obtain continuous information on the propagation of swells on the coast and, more precisely, the site exposure, since the swell’s significant height directly relates to breaking the cages [21].
- GIS model: the geoprocessing tools maintained by the Python development language under the ANACONDA environment. We studied the propagation results to extract the appropriate places.
3.1. Model Description (SWAN)
3.2. Set-Up of the SWAN Wave Model (Boundaries and Initial Conditions)
3.3. GIS Modelling
- Coastline: this information was retrieved in vector line format to delimit the coastal zone’s different areas, off-the coast and offshore [31,32], via the ’buffer zone’ geoprocessing method. The table (Table 3) specifies each area’s different characteristics based on the distance from the coastline.
4. Result and Discussion
4.1. Model Validation
4.2. Interannual and Seasonal Variability
4.3. Monthly Model Product
4.4. GIS Model Product
- Zone 1: located between 29.91° and 30.94° longitudinal, this zone, which is part of the communes of Tiznit, Chtouka Ait Baha, Inezgane Ait Melloul and also Agadir Idaoutanan, is characterized by the presence of favorable sites in both areas (off-the coast and offshore) with a width that exceeds no longer than 6 km, the total area of the area is around 69 Ha (40 Ha offshore and 29 Ha off-the coast).
- Zone 2: located towards the south of zone 1 belonging to the communes of Sidi Ifni, Guelmim Tantan and Tarfaya, between 27.89° and 29.1° longitudinal, this zone, with the deference of the first one, integrates only one domain (offshore) but this time over a larger area of around 320 ha with a width that can reach 16 km.
4.5. Optimal Area and Development Plan
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GIS | Geographic Information Systems |
ANDA | National Aquaculture Development Agency |
SWAN | Simulating Waves Nearshore |
WW3 | WAVEWATCH III model |
AVISO | Archiving, Validation, and Interpolation of Satellite Oceanographic |
CEM | Environmental Modeling Center |
MMAB | Modeling and Analysis Branch |
NCEP | National Environmental Prediction Centers |
GEBCO | Gridded chart of the European Marine Observation |
Hs | Significant Wave Height |
Tp | Peak Period |
Dir | Direction |
UTM | Universal Transverse Mercator |
CNES | National Center For Space Studies |
GDAL | Geospatial Data Abstraction Library |
References
- National Aquaculture Development Agency. Guide de l’Investissement en Aquaculture au Maroc Tome 1: Aspects Techniques et Économiques de l’Activité Aquacole; Technical Report; National Aquaculture Development Agency: Battaramulla, Sri Lanka, 2017.
- Oxford Business Group. Aquaculture in Morocco improves under Halieutis Plan|Morocco 2020|Oxford Business Group; Oxford Business Group: Dubai, United Arab Emirates, 2020. [Google Scholar]
- Brigolin, D.; Lourguioui, H.; Taji, M.A.; Venier, C.; Mangin, A.; Pastres, R. Space allocation for coastal aquaculture in North Africa: Data constraints, industry requirements and conservation issues. Ocean. Coast. Manag. 2015, 116, 89–97. [Google Scholar] [CrossRef]
- Boyd, C.E.; Clay, J.W. Shrimp Aquaculture and the Environment. Sci. Am. 1998, 278, 58–65. [Google Scholar] [CrossRef]
- Kumar, M.; Cripps, S. Aquaculture: Farming Aquatic Animals and Plants, 2nd ed.; Wiley Blackwell: Hoboken, NJ, USA, 2013; 629p. [Google Scholar] [CrossRef]
- Soto, D.; Aguilar-Manjarrez, J.; Brugère, C.; Angel, D.; Bailey, C.; Black, K.; Edwards, P.; Costa-Pierce, B.; Chopin, T.; Deudero, S.; et al. Applying an ecosystem-based approach to aquaculture: Principles, scales and some management measures. In Building an Ecosystem Approach to Aquaculture, Proceedings of the FAO/Universitat de les Illes Balears Expert Workshop, Palma de Mallorca, Spain, 7–11 May 2007; FAO Fisheries and Aquaculture Proceedings No. 14; FAO: Quebec City, QC, Canada, 2008; pp. 15–35. [Google Scholar]
- Gentry, R.R.; Lester, S.E.; Kappel, C.V.; White, C.; Bell, T.W.; Stevens, J.; Gaines, S.D. Offshore aquaculture: Spatial planning principles for sustainable development. Ecol. Evol. 2017, 7, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.E.; Schmittou, H.R. Achievement of sustainable aquaculture through environmental management. Aquac. Econ. Manag. 1999, 3, 59–69. [Google Scholar] [CrossRef]
- Radiarta, I.N.; Saitoh, S.I.; Miyazono, A. GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan. Aquaculture 2008, 284, 127–135. [Google Scholar] [CrossRef]
- Nath, S.S.; Bolte, J.P.; Ross, L.G.; Aguilar-Manjarrez, J. Applications of geographical information systems (GIS) for spatial decision support in aquaculture. Aquac. Eng. 2000, 23, 233–278. [Google Scholar] [CrossRef]
- von Thenen, M.; Maar, M.; Hansen, H.S.; Friedland, R.; Schiele, K.S. Applying a combined geospatial and farm scale model to identify suitable locations for mussel farming. Mar. Pollut. Bull. 2020, 156, 111254. [Google Scholar] [CrossRef]
- Gimpel, A.; Stelzenmüller, V.; Töpsch, S.; Galparsoro, I.; Gubbins, M.; Miller, D.; Murillas, A.; Murray, A.G.; Pınarbaşı, K.; Roca, G.; et al. A GIS-based tool for an integrated assessment of spatial planning trade-offs with aquaculture. Sci. Total. Environ. 2018, 627, 1644–1655. [Google Scholar] [CrossRef]
- Ross, L.; Telfer, T.; Falconer, L.; Soto, D.; Aguilar-Manjarrez, J. Site Selection and Carrying Capacities for Inland and Coastal Aquaculture; FAO: Rome, Italy, 2013; p. 282. [Google Scholar]
- Sierra, J.P.; Martín, C.; Mösso, C.; Mestres, M.; Jebbad, R. Wave energy potential along the Atlantic coast of Morocco. Renew. Energy 2016, 96, 20–32. [Google Scholar] [CrossRef]
- Gentry, R.R.; Froehlich, H.E.; Grimm, D.; Kareiva, P.; Parke, M.; Rust, M.; Gaines, S.D.; Halpern, B.S. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 2017, 1, 1317–1324. [Google Scholar] [CrossRef]
- GEBCO Bathymetric Compilation Group. The GEBCO_2019 Grid—A Continuous Terrain Model of the Global Oceans and Land; British Oceanographic Data Centre: Liverpool, UK, 2019. [Google Scholar]
- Benazzouz, A.; Mabchour, H.; Had, K.E.; Zourarah, B.; Mordane, S. Offshore Wind Energy Resource in the Kingdom of Morocco: Assessment of the Seasonal Potential Variability Based on Satellite Data. J. Mar. Sci. Eng. 2021, 9, 31. [Google Scholar] [CrossRef]
- Liu, Q.; Babanin, A.V.; Guan, C.; Zieger, S.; Sun, J.; Jia, Y. Calibration and validation of HY-2 altimeter wave height. J. Atmos. Ocean. Technol. 2016, 33, 919–936. [Google Scholar] [CrossRef] [Green Version]
- Ardhuin, F.; Rogers, E.; Babanin, A.V.; Filipot, J.F.; Magne, R.; Roland, A.; Van Der Westhuysen, A.; Queffeulou, P.; Lefevre, J.M.; Aouf, L.; et al. Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, W.; Gill, E.W. Estimation of significant wave height from X-band marine radar images based on ensemble empirical mode decomposition. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 1740–1744. [Google Scholar] [CrossRef]
- Lader, P.; Jensen, A.; Sveen, J.K.; Fredheim, A.; Enerhaug, B.; Fredriksson, D. Experimental investigation of wave forces on net structures. Appl. Ocean. Res. 2007, 29, 112–127. [Google Scholar] [CrossRef]
- Benoit, M.; Marcos, F.; Becq, F. Development of a third generation shallow-water wave model with unstructured spatial meshing. In Proceedings of the Coastal Engineering 1996, Orlando, FL, USA, 2–6 September 1996; pp. 465–478. [Google Scholar]
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH-III Version 2.22; Technical Note; US Department of Commerce, NOAA, NWS, NCEP: Washington, DC, USA, 2002.
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH IIITM Version 3.14; Technical Note, MMAB Contribution; U. S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Centers for Environmental Prediction: Camp Springs, MD, USA, 2009; Volume 276, p. 220.
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Christakos, K.; Furevik, B.R.; Aarnes, O.J.; Breivik, Ø.; Tuomi, L.; Byrkjedal, Ø. The importance of wind forcing in fjord wave modelling. Ocean. Dyn. 2020, 70, 57–75. [Google Scholar] [CrossRef] [Green Version]
- Ris, R.C.; Holthuijsen, L.H.; Booij, N. Spectral model for waves in the near shore zone. In Proceedings of the 24th International Conference on Coastal Engineering, Kobe, Japan, 23–28 October 1995; Volume 1, pp. 68–78. [Google Scholar] [CrossRef]
- Valavanis, V.D. Geographic Information Systems in Oceanography and Fisheries; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Aguilar-Manjarrez, J.; Soto, D.; McDaid Kapetsky, J. The potential of spatial planning tools to support the ecosystem approach to aquaculture. In FAO Fisheries and Aquaculture Proceedings, Proceedings of the FAO/Rome Expert Workshop, Rome, Italy, 19–21 November 2008; Volume Nº 17; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; p. 176. [Google Scholar]
- Aronoff, S. Geographic information systems: A management perspective. Geocarto Int. 1989, 4, 58. [Google Scholar] [CrossRef]
- Holmer, M. Environmental issues of fish farming in offshore waters: Perspectives, concerns and research needs. Aquac. Environ. Interact. 2010, 1, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Lovatelli, A.; Aguilar-Manjarrez, J.; Soto, D. (Eds.) Expanding Mariculture Farther Offshore: Technical, Environmental, Spatial and Governance Challenges. In FAO Fisheries and Aquaculture Proceedings No. 24, FAO Technical Workshop, Orbetello, Italy, 22–25 March 2010; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar] [CrossRef]
- Kapetsky, J.; Aguilar-Manjarrez, J. Geographic information systems, remote sensing and mapping for the development and management of marine aquaculture. arXiv 2007, arXiv:1011.1669v3. [Google Scholar]
- Pérez, O.M.; Telfer, T.C.; Ross, L.G. On the calculation of wave climate for offshore cage culture site selection: A case study in Tenerife (Canary Islands). Aquac. Eng. 2003, 29, 1–21. [Google Scholar] [CrossRef]
- Grant, J.; Bacher, C.; Ferreira, J.G.; Groom, S.; Morales, J.; Rodriguez-benito, C.; Saitoh, S.I.; Sathyendranath, S. Remote Sensing Applications in Marine Aquaculture. In Remote Sensing in Fisheries and Aquaculture; IOCCG: Monterey, CA, USA, 2008; pp. 77–88. [Google Scholar]
- Pérez, O.M.; Telfer, T.C.; Ross, L.G. Geographical information systems-based models for offshore floating marine fish cage aquaculture site selection in Tenerife, Canary Islands. Aquac. Res. 2005, 36, 946–961. [Google Scholar] [CrossRef]
- Mhammdi, N.; Snoussi, M.; Medina, F.; Jaaïdi, E.B. Recent sedimentation in the NW african shelf. Geol. Soc. Mem. 2014, 41, 131–146. [Google Scholar] [CrossRef]
- ANDA. Developpement de Projets d’Aquaculture Marine Dans la Region de Souss Massa; Technical Report; The World Bank: Washington, DC, USA, 2014.
- Ross, L.G.; Mendoza, E.A.; Beveridge, M.C. The application of geographical information systems to site selection for coastal aquaculture: An example based on salmonid cage culture. Aquaculture 1993, 112, 165–178. [Google Scholar] [CrossRef]
Month | Hs | Per | Dir |
---|---|---|---|
1 | 3.72 | 347 | 14.578 |
2 | 3.979 | 346 | 15.073 |
3 | 3.639 | 349 | 13.869 |
4 | 3.254 | 349 | 13.277 |
5 | 2.769 | 353 | 12.077 |
6 | 2.36 | 353 | 10.726 |
7 | 2.306 | 352 | 10.732 |
8 | 2.25 | 350 | 10.803 |
9 | 2.37 | 351 | 11.881 |
10 | 3.18 | 347 | 13.102 |
11 | 3.856 | 349 | 13.978 |
12 | 3.883 | 342 | 14.479 |
Description | Detail | |
---|---|---|
Bathy | Source | Gebco |
Resolution | 719 m/719 m | |
Number Row/col | 644/644 | |
Projection | UTM Zone 28 | |
SWAN parameter | COORDinates | Cartesian |
Mode stationary | Two dimensional | |
Boundspec | Nord and South | |
Offshores conditions | Wave watch III | Hs/Dir/Tp |
Coastal Area | Offshore Area | ||
---|---|---|---|
Coast | Off-the Coast | Offshore | |
Coastal exposition | partial | Sheltred | Non-Sheltred |
Investisement | Low | Medium | High |
Distance from coast | 500 m | 500 m–3 km | 3 km |
Good | Medium | Bad | |
---|---|---|---|
Bathy | Between 30 and 50 m | 15 and 30 | 10 |
Hs | 1 and 3 | 1 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taji, M.A.; Hilali, A.; Rhinane, H.; Mangin, A.; Bryère, P.; Orbi, A.; Mabchour, H.; Zourarah, B.; Benazzouz, A. GIS and Wave Modeling for Establishing a Potential Area of Aquaculture—Case Study: Central Atlantic Part of the Moroccan Coast. Fluids 2022, 7, 67. https://doi.org/10.3390/fluids7020067
Taji MA, Hilali A, Rhinane H, Mangin A, Bryère P, Orbi A, Mabchour H, Zourarah B, Benazzouz A. GIS and Wave Modeling for Establishing a Potential Area of Aquaculture—Case Study: Central Atlantic Part of the Moroccan Coast. Fluids. 2022; 7(2):67. https://doi.org/10.3390/fluids7020067
Chicago/Turabian StyleTaji, Mohamed Amine, Atika Hilali, Hassan Rhinane, Antoine Mangin, Philippe Bryère, Abdelatif Orbi, Hassan Mabchour, Bendahhou Zourarah, and Aïssa Benazzouz. 2022. "GIS and Wave Modeling for Establishing a Potential Area of Aquaculture—Case Study: Central Atlantic Part of the Moroccan Coast" Fluids 7, no. 2: 67. https://doi.org/10.3390/fluids7020067
APA StyleTaji, M. A., Hilali, A., Rhinane, H., Mangin, A., Bryère, P., Orbi, A., Mabchour, H., Zourarah, B., & Benazzouz, A. (2022). GIS and Wave Modeling for Establishing a Potential Area of Aquaculture—Case Study: Central Atlantic Part of the Moroccan Coast. Fluids, 7(2), 67. https://doi.org/10.3390/fluids7020067