Aerodynamic Drag Reduction of Railroad Tank Wagons
Abstract
:1. Introduction
- Fairing of platform;
- Modification of face radius;
- Side skirts;
- Inter-wagon disc.
2. Experimental Setup
3. Results
3.1. Baseline Configuration
3.2. Modification of Face Radius
3.3. Side Skirts
3.4. Fairing of Roof Platform
3.5. Inter-Wagon Disc
- a: Disc is located in the upstream gap but attached to the upstream wagon;
- b: Disc is located in the upstream gap and attached to the test wagon;
- c: Disc is located in the downstream gap and attached to the test wagon;
- d: Disc is located in the downstream gap but attached to the downstream wagon;
- e: Two discs attached to the test wagon;
- f: Two discs each attached to the upstream vehicle.
3.6. Combination of Side-Skirts and Inter-Wagon Disc
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lukaszewicz, P. Energy Consumption and Running Time for Trains. Ph.D. Thesis, Railway Technology, Department of Vehicle Engineering, Stockholm, Sweden, 2001. [Google Scholar]
- Davis, W.J. The Tractive Resistance of Electric Locomotives and Cars; General Electric: Boston, MA, USA, 1926. [Google Scholar]
- EN 14067-2:2003; Railway Applications-Aerodynamics, Part 2: Aerodynamics on Open Track. Beuth Publishing: Berlin, Germany, 2003. [CrossRef]
- Netz21-Die Netzstrategie der Deutschen Bahn; Vereinigung Europäischer Eisenbahngüterverkehrsunternehmen e.V.: Berlin, Germany, 2008.
- Barkan, C. Railroad Transportation Energy Efficiency Sustainable Seminar Series; Illinois Sustainable Technology Center: Champaign, IL, USA, 2009. [Google Scholar]
- Beagles, A.E.; Fletcher, D.I. The aerodynamics of freight: Approaches to save fuel by optimising the utilisation of container trains. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2013, 227, 635–643. [Google Scholar] [CrossRef]
- Soper, D. The Aerodynamics of a Container Freight Train. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2014. [Google Scholar]
- Li, C.; Burton, D.; Kost, M.; Sheridan, J.; Thompson, M.C. Flow topology of a container train wagon subjected to varying local loading configurations. J. Wind Eng. Ind. Aerodyn. 2017, 169, 12–29. [Google Scholar] [CrossRef]
- Bell, J.R.; Burton, D.; Thompson, M.C. The boundary-layer characteristics and unsteady flow topology of full-scale operational inter-modal freight trains. J. Wind. Eng. Ind. Aerodyn. 2020, 201, 104164. [Google Scholar] [CrossRef]
- Tschepe, J.; Leiste, M.; Baumgärtel, Y.; Nayeri, C.N.; Hecht, M. Aufbau und Erprobung von Innovativen Güterwagen—Aerodynamische Optimierung von Güterwagen; Technische Universität Berlin: Berlin, Germany, 2017; Available online: https://www.bmvi.de/goto?id=456222 (accessed on 26 July 2022).
- Bendel, H. Untersuchungen zur Verringerung des aerodynamischen Widerstandes von Güterwagen. Z. Eisenb. Verk. 1990, 114, 124–132. [Google Scholar]
- Watkins, S.; Saunders, J.; Kumar, H. Aerodynamic drag reduction of goods trains. J. Wind Eng. Ind. Aerodyn. 1992, 40, 147–178. [Google Scholar] [CrossRef]
- Hecht, M.; Maengel, C.; Jakatt, H.; Nayeri, C.; Shoeib, R.; Alsdorf, G.; Wullstein, U. Transport Container, Vehicle, Traction Group, Method for Loading a Transport Container, and Method for Transporting Bulk Material. U.S. Patent 9,580,084, 28 February 2017. [Google Scholar]
- Gielow, M.; Furlong, C. Results of Wind Tunnel and Full-Scale Tests Conducted from 1983 to 1987 in Support of the Association of American Railroads’train Energy Program; Technical Report No. AAR R-685; Association of American Railroads Research Center: Washington, DC, USA, 1988. [Google Scholar]
- Maleki, S.; Burton, D.; Thompson, M.C. Flow structure between freight train containers with implications for aerodynamic drag. J. Wind Eng. Ind. Aerodyn. 2019, 188, 194–206. [Google Scholar] [CrossRef]
- Maleki, S.; Burton, D.; Thompson, M.C. On the flow past and forces on double-stacked wagons within a freight train under cross-wind. J. Wind Eng. Ind. Aerodyn. 2020, 206, 104224. [Google Scholar] [CrossRef]
- Quazi, A.; Crouch, T.; Bell, J.; McGreevy, T.; Thompson, M.C.; Burton, D. A field study on the aerodynamics of freight trains. J. Wind Eng. Ind. Aerodyn. 2021, 209, 104463. [Google Scholar] [CrossRef]
- Tschepe, J.; Nayeri, C.N.; Paschereit, C.O. On the influence of Reynolds number and ground conditions on the scaling of the aerodynamic drag of trains. J. Wind Eng. Ind. Aerodyn. 2021, 213, 104594. [Google Scholar] [CrossRef]
- Irwin, H. The Design of Spires for Wind Simulation. J. Wind Eng. Ind. Aerodyn. 1981, 7, 361–366. [Google Scholar] [CrossRef]
- Hucho, W.H. Strömungsphänomene. In Aerodynamik der stumpfen Körper: Physikalische Grundlagen und Anwendungen in der Praxis; Vieweg+Teubner Verlag: Wiesbaden, Germany, 2012; pp. 12–93. [Google Scholar] [CrossRef]
- Hoerner, S. Fluid-Dynamic Drag; Hoerner Fluid Dynamics: Bakersfield, CA, USA, 1965. [Google Scholar]
- Cooper, K.R.; Leuschen, J. Model and Full-Scale Wind Tunnel Tests of Second-Generation Aerodynamic Fuel Saving Devices for Tractor-Trailers; Technical Report; SAE Technical Paper: No. 2005-01-3512; SAE International: Warrendale, PA, USA, 2005. [Google Scholar]
- Kim, J.J.; Kim, J.; Hann, T.; Kim, D.; Roh, H.S.; Lee, S.J. Considerable drag reduction and fuel saving of a tractor–trailer using additive aerodynamic devices. J. Wind Eng. Ind. Aerodyn. 2019, 191, 54–62. [Google Scholar] [CrossRef]
- Mair, W. The effect of a rear-mounted disc on the drag of a blunt-based body of revolution. Aeronaut. Q. 1965, 16, 350–360. [Google Scholar] [CrossRef]
- Gilliéron, P.; Kourta, A. Aerodynamic drag reduction by vertical splitter plates. Exp. Fluids 2010, 48, 1–16. [Google Scholar] [CrossRef]
Device | |
---|---|
Face radius | ≈15% |
Side-skirts | 15 to 20% |
Fairing of platform | ≈2.5% |
Inter-wagon disc | ≈15% |
Inter-wagon disc combined with side-skirts | ≈30% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nayeri, C.N.; Tschepe, J.; Schulze, H.; Schell, H. Aerodynamic Drag Reduction of Railroad Tank Wagons. Fluids 2022, 7, 283. https://doi.org/10.3390/fluids7080283
Nayeri CN, Tschepe J, Schulze H, Schell H. Aerodynamic Drag Reduction of Railroad Tank Wagons. Fluids. 2022; 7(8):283. https://doi.org/10.3390/fluids7080283
Chicago/Turabian StyleNayeri, Christian Navid, Jonathan Tschepe, Harald Schulze, and Hanno Schell. 2022. "Aerodynamic Drag Reduction of Railroad Tank Wagons" Fluids 7, no. 8: 283. https://doi.org/10.3390/fluids7080283
APA StyleNayeri, C. N., Tschepe, J., Schulze, H., & Schell, H. (2022). Aerodynamic Drag Reduction of Railroad Tank Wagons. Fluids, 7(8), 283. https://doi.org/10.3390/fluids7080283