Shear Flows of Dilatant Fluids with Limited Shear Rates: Analytical Results and Linear Stability Analysis
Abstract
:1. Introduction
2. The Mathematical Model
2.1. Channel Flow Driven by a Pressure Gradient
2.2. Flow between Coaxial Cylinder
2.3. Flow down an Inclined Plane
3. Linear Stability Analysis
3.1. Channel Flow
3.2. Taylor–Couette Flow
3.3. Flow down an Inclined Plane
4. Conclusions and Perspectives
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metzner, A.; Whitlock, M. Flow behavior of concentrated (dilatant) suspensions. Trans. Soc. Rheol. 1958, 2, 239–254. [Google Scholar] [CrossRef]
- Sidaoui, N.; Arenas Fernandez, P.; Bossis, G.; Volkova, O.; Meloussi, M.; Aguib, S.; Kuzhir, P. Discontinuous shear thickening in concentrated mixtures of isotropic-shaped and rod-like particles tested through mixer type rheometry. J. Rheol. 2020, 64, 817–836. [Google Scholar] [CrossRef]
- Thomas, J.E.; Goyal, A.; Singh Bedi, D.; Singh, A.; Del Gado, E.; Chakraborty, B. Investigating the nature of discontinuous shear thickening: Beyond a mean-field description. J. Rheol. 2020, 64, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Farina, A.; Fasano, A.; Fusi, L.; Rajagopal, K. The one-dimensional flow of a fluid with limited strain-rate. Q. Appl. Math. 2011, 69, 549–568. [Google Scholar] [CrossRef] [Green Version]
- Mari, R.; Seto, R.; Morris, J.F.; Denn, M.M. Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 2014, 58, 1693–1724. [Google Scholar] [CrossRef] [Green Version]
- Clavaud, C.; Bérut, A.; Metzger, B.; Forterre, Y. Revealing the frictional transition in shear-thickening suspensions. Proc. Natl. Acad. Sci. USA 2017, 114, 5147–5152. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Mari, R.; Denn, M.M.; Morris, J.F. A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 2018, 62, 457–468. [Google Scholar] [CrossRef]
- Wyart, M.; Cates, M.E. Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 2014, 112, 098302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.; Zhang, H.; Forman, N.A.; Maynor, B.W.; Betts, D.E.; DeSimone, J.M.; Jaeger, H.M. Shear thickening and jamming in densely packed suspensions of different particle shapes. Phys. Rev. E 2011, 84, 031408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhabra, R.; Richardson, J. Non-Newtonian Flow in Process Industries 1999; Biddles Ltd.: Guildford, UK; King’s Lynn, UK, 1999. [Google Scholar]
- Ancey, C. Plasticity and geophysical flow: A review. J. Non-Newton. Fluid Mech. 2007, 142, 4–35. [Google Scholar] [CrossRef]
- Lee, Y.S.; Wetzel, E.D.; Wagner, N.J. The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 2003, 38, 2825–2833. [Google Scholar] [CrossRef]
- Gálvez, L.O.; de Beer, S.; van der Meer, D.; Pons, A. Dramatic effect of fluid chemistry on cornstarch suspensions: Linking particle interactions to macroscopic rheology. Phys. Rev. E 2017, 95, 030602. [Google Scholar]
- Blechta, J.; Málek, J.; Rajagopal, K. On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion. SIAM J. Math. Anal. 2020, 52, 1232–1289. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, K.R. On implicit constitutive theories. Appl. Math. 2003, 48, 279–319. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, D.; Morgan, M.L.; Sandnes, B. Flow-to-fracture transition and pattern formation in a discontinuous shear thickening fluid. Commun. Phys. 2020, 3, 119. [Google Scholar] [CrossRef]
- Fusi, L.; Saccomandi, G.; Rajagopal, K.R.; Vergori, L. Flow past a porous plate of non-Newtonian fluids with implicit shear stress shear rate relationships. Eur. J. Mech.-B/Fluids 2022, 92, 166–173. [Google Scholar] [CrossRef]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.; Jeffrey, D.J.; Knuth, D.E. On the LambertW function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Pascal, J. Linear stability of fluid flow down a porous inclined plane. J. Phys. D Appl. Phys. 1999, 32, 417. [Google Scholar] [CrossRef]
- Nouar, C.; Frigaard, I. Stability of plane Couette–Poiseuille flow of shear-thinning fluid. Phys. Fluids 2009, 21, 064104. [Google Scholar] [CrossRef]
- Yih, C.S. Stability of liquid flow down an inclined plane. Phys. Fluids 1963, 6, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Darbois Texier, B.; Lhuissier, H.; Forterre, Y.; Metzger, B. Surface-wave instability without inertia in shear-thickening suspensions. Commun. Phys. 2020, 3, 232. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusi, L. Shear Flows of Dilatant Fluids with Limited Shear Rates: Analytical Results and Linear Stability Analysis. Fluids 2023, 8, 25. https://doi.org/10.3390/fluids8010025
Fusi L. Shear Flows of Dilatant Fluids with Limited Shear Rates: Analytical Results and Linear Stability Analysis. Fluids. 2023; 8(1):25. https://doi.org/10.3390/fluids8010025
Chicago/Turabian StyleFusi, Lorenzo. 2023. "Shear Flows of Dilatant Fluids with Limited Shear Rates: Analytical Results and Linear Stability Analysis" Fluids 8, no. 1: 25. https://doi.org/10.3390/fluids8010025
APA StyleFusi, L. (2023). Shear Flows of Dilatant Fluids with Limited Shear Rates: Analytical Results and Linear Stability Analysis. Fluids, 8(1), 25. https://doi.org/10.3390/fluids8010025